ACS Publications. Most Trusted. Most Cited. Most Read
CONTENT TYPES

An “On-Cycle” Precatalyst Enables Room-Temperature Polyfluoroarylation Using Sensitive Boronic Acids

  • Liye Chen
    Liye Chen
    Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
    More by Liye Chen
  • Haydn Francis
    Haydn Francis
    Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
  • , and 
  • Brad P. Carrow*
    Brad P. Carrow
    Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
    *E-mail: [email protected]
Cite this: ACS Catal. 2018, 8, 4, 2989–2994
Publication Date (Web):March 2, 2018
https://doi.org/10.1021/acscatal.8b00341
Copyright © 2018 American Chemical Society
Subscribed Access
Article Views
3655
Altmetric
-
Citations
LEARN ABOUT THESE METRICS
PDF (1 MB) OpenURL UNIV OF HOUSTON MAIN
Supporting Info (1)»

Abstract

The use of fluorinated arylboronic acid building blocks in cross-coupling has remained challenging, because of their acute base sensitivity. We report a general solution to this problem using a true catalytic intermediate, Pd(PAd3)(p-FC6H4)Br, as a uniquely effective “on-cycle” precatalyst that allows Suzuki–Miyaura coupling to occur much faster than even the most severe protodeboronation side reactions. Control of boron speciation between the active acid and dormant ester forms was also found to play a critical role in balancing the rates of catalysis versus reagent decomposition. This method is compatible with any fluorination pattern, base-labile functional groups, and a range of bromo(hetero)arenes.

The electronegativity of fluorine can engender distinct chemical and physical properties in fluoroaromatic compounds such as enhanced chemical stability, unique electronic structures, and solid-state packing versus their hydrocarbon analogues.(1) These effects are attractive for applications in organic electronics and catalyst design (see Figure 1),(2) but tailored synthetic approaches are often needed for the preparation of fluoroaromatic motifs, because of the strong influence fluorine also exerts on reactivity. A notable example of this latter effect is sensitization of (hetero)arylboronic acids toward decomposition by base-promoted protodeboronation (PDB) with an increasing number of F atoms, or similar inductively withdrawing substituents.(3) A systematic study by Lloyd-Jones established that the rates of fluoroarylboronic acid PDB can vary dramatically over 9 orders of magnitude, depending on the substitution pattern. The most severe cases are characterized by di-ortho-halo substitution that shortens the boronic acid half-life to ca. 101–10–3 s at elevated temperature and high pH.(3a,c) This represents a major impediment toward efficient catalysis involving these reagents.(4,5) Low toxicity and bench stability are nevertheless attractive features of boronic acids, and they remain the only commercial organometallic sources of many polyfluoroaromatic fragments. Therefore, a Suzuki–Miyaura coupling (SMC) method compatible with any sensitive fluorinated boronic acid that also avoids harsh conditions or stoichiometric metal additives remains highly desirable.(2a−c,6,7)

Figure 1

Figure 1. Illustrative examples of polyfluoroaromatic motifs in materials and catalysts.

The problem of competing PDB in cross-coupling arises from the relatively strong bases (i.e., hydroxide, phosphate, carbonate) typically needed to drive the transmetalation (TM) step of the catalytic cycle.(8) This base problem is the primary impediment toward general cross-coupling methods that are applicable to many sensitive substrates, including polyfluoroarylboronic acids.(5c−e,7) In this regard, we recently reported a cationic SMC method between aryldiazonium salts and unstable boronic acids that occurs with no added base.(6) An encouraging result in this study was the stoichiometric reaction between C6F5B(OH)2, one of the most sensitive boronic acids, and an isolated T-shaped complex Pd(PAd3)(p-FC6H4)Cl (1-Cl) to generate biaryl at room temperature (rt) in the absence of base (eq 1). This observation contradicts conventional wisdom about mechanisms of TM in SMC(8) and suggested to us that catalysis could potentially be extended to abundant haloarene electrophiles. However, a complication in the stoichiometric reaction was competing protodemetalation that limited the biaryl yield, because stoichiometric acid byproduct is formed in the absence of a base. Here, we report a solution to this problem that now allows SMC between unstable boronic acids and bromo(hetero)arenes. This was made possible by the development of a scalable, one-pot route to an “on-cycle” Pd-PAd3 precatalyst, which enables efficient catalysis under conditions that are sufficiently mild to suppress both protodemetalation and PDB.

Coordinatively unsaturated arylpalladium halide complexes with a single dative ligand have been implicated as intermediates in several cross-coupling reactions that use state-of-the-art catalysts.(9) The direct use of an unsaturated Pd(L)(Ar)X species as catalysts would thus be advantageous, because it would circumvent precatalyst initiation that can vary widely in time and often requires a strong base or nucleophile.(10) On the other hand, the synthesis of Pd(L)(Ar)X complexes can be cumbersome or involve sensitive metal precursors.(9a,11,12) Along these lines, 1-Cl was initially considered as a precatalyst candidate for SMC due to its high reactivity toward base-free TM, but its reported synthesis was not scalable, because of a capricious intermediate in the multistep sequence.(6) We have successfully identified a second-generation route to a related complex 1-Br involving a one-pot, rt reaction between a bromoarene and a commercially available palladacycle (eq 2).The reaction proceeds via deprotonation of the initial PAd3-coordinated palladacycle by sodium hydroxide, then intramolecular C–N reductive elimination to liberate carbazole and a 12-electron (PAd3)Pd0 intermediate.(13) This highly reactive Pd(0) species is trapped by oxidative addition in the presence of 1-bromo-4-fluorobenzene (2) to form Pd(PAd3)(p-FC6H4)Br (1-Br) in high isolated yield (89%) after a workup with LiBr. The inclusion of a salt hydrate (Na2SO4·10H2O) was important to achieve high yield, possibly through the release of water that improves the base solubility in THF. This T-shaped complex is notably stable toward air, moisture, and even silica gel, allowing easy purification via flash chromatography and benchtop storage.

We next turned to the catalytic SMC between C6F5B(OH)2 and bromoarene 2 as a challenging model reaction. Under conditions similar to the stoichiometric TM reaction (eq 1), catalyst 1-Br (1 mol %) produced only trace biaryl after 1 h at rt (Table 1, entry 1). We believed that some type of base should be an important additive to mitigate protodemetalation that might cause catalyst deactivation, but a short survey (entries 2–6) did not drastically improve the outcome and also led to significant PDB side product (Table S5 in the Supporting Information). Substitution of C6F5Bpin for C6F5B(OH)2 also did little to improve the yield (see entries 2 and 3 in Table 1) under anhydrous conditions. On the other hand, a surprising jump in yield of biaryl 3 (65%) was observed when the ester was generated in situ from C6F5B(OH)2 and pinacol (entry 7 in Table 1). The only difference between reactions in entries 3 and 8 in Table 1 is the water formed by the condensation reaction; deliberate addition of water to the SMC reaction with isolated C6F5BPin recapitulated this effect and confirmed a critical role of water in this catalytic reaction.

Table 1. Pentafluorophenylboronic Acid/Pinacol Ester Couplinga
a

Conditions: 2 (0.25 mmol), C6F5[B] (0.28 mmol), and 1-Br (1 mol %) were stirred in toluene (2.5 mL) at room temperature (rt). A base (1.1 equiv) was added, where indicated. Pin = pinacolato. bDetermined by 19F NMR vs 1,3-C6F2H4. c0.12 equiv of salt hydrate.

Boronic esters are known to be stable toward PDB under anhydrous conditions,(7g) but control reactions between C6F5BPin and Et3N suggest the rate of PDB approaches that of free C6F5B(OH)2 with increasing water content (Figure S1 in the Supporting Information). Careful addition of stoichiometric water (ca. 1–2 equiv) to the SMC with isolated C6F5BPin is therefore important for optimal biaryl yield (entries 9 and 10 in Table 1), which may facilitate a fast equilibration between boronic acid and ester, the former being the active species in TM and the latter being stabilized toward PDB. Therefore, a favorable balance between the rates of catalysis versus PDB at low [H2O] seems critical for high yield with C6F5B(OH)2, which is the most extreme case. In this regard, a slow release of water from an inexpensive, insoluble salt hydrate Na2SO4·10H2O (entry 11 in Table 1) gave the highest biaryl yield (93%). Importantly, it is also easy to dispense and provided generally higher yields than did direct water addition, which is consistent with the established use of salt hydrates to meter water release in nonaqueous enzymatic catalysis.(14−16)

The central role of the on-cycle precatalyst 1-Br, which requires no activation step, was subsequently validated under the optimized catalytic conditions. Four additional PAd3-coordinated catalysts were tested (entries 12–15 in Table 1), and yields of biaryl 3 were indeed significantly reduced after 1 h (1%–41%). Several other state-of-the-art Pd precatalysts were also screened (entries 16–20 in Table 1), and the resulting low yields (0–4%) indicate that the mild reactions conditions for this SMC method may indeed exacerbate typical catalyst activation pathways that typically involve a base or nucleophile stronger than a tertiary amine.(7a,f,17) Repetition of these control experiments under the conditions previously optimized for each of the above precatalysts also led to low or no yield of 3 (see Table S6 in the Supporting Information). Complex 1-Br should also be useful in other areas of coupling chemistry that would benefit from a fast initiating catalyst. Related oxidative addition complexes have been used with great effect in Buchwald-Hartwig amination and catalyst transfer polycondensation,(9c,11) for example.

Upon examination of the scope of this SMC method, it was quickly apparent that a broader range of polyfluoroarylboronic acids and derivatives is tolerated (Scheme 1) than our previous cationic SMC protocol,(6) the latter being limited to unhindered aryl groups with two inductively withdrawing ortho-substituents (e.g., F or OR). The addition of pinacol was beneficial when using boronic acids 59 that have particularly short PDB half-lives,(3a) but boronic acids 1018 with relatively longer half-lives afforded high yields, even in the absence of pinacol. Adjusted base loading was unnecessary for phenolic reagent 13, thanks to the mild basicity of this medium. Also of note is that a more hindered, unstable boronic acid (14), which was problematic in a previous study on SMC with sensitive boron reagents,(5d) underwent smooth coupling with this protocol. In total, high isolated yields (80%–95%) were obtained across the entire range of this challenging suite of unstable boron reagents.

Scheme 1

Scheme 1. Scope of SMC with Polyhaloarylboron Reagentsa

aIsolated yields. bConditions described in Table 1, entry 11. cArFB(OH)2 (1.3 equiv), pinacol (1.3 equiv), MgSO4 (1.5 equiv), no added H2O. dArFB(OH)2 (1.1 equiv), pinacol (1.1 equiv), Na2SO4·10H2O (1 equiv), no added H2O.

Finally, the range of applicable bromo(hetero)arenes was explored (see Scheme 2). The isolated yield of biaryl appears to be relatively insensitive to substituent electronic effects at the electrophile (e.g., 2022, 24), and several tri-ortho-substituted motifs were constructed in high yield. Similar to an initial report on SMC using complex 4,(7f) attempted synthesis of a tetra-ortho-substituted biaryl (e.g., S1) failed using 1-Br, presumably due to the significant space filling of PAd3 within the catalyst coordination sphere. Compatibility with coordinating heteroarenes was very good (e.g., 25, 31, and 32) and base-sensitive functional groups, such as trifluoroacetamide (19) or N-methyliminodiacetic acid boronate (23) persisted under the mild conditions. Protic amines or N-heterocycles (e.g., 24, 26, and 28) also did not poison the catalyst, which can be problematic under more basic coupling conditions that generate covalent metal–nitrogen bonds.(18) The polyfluoroaromatic anilines 24 and 28 (89%–91%) are building blocks for α-diimine ligands used in late transition-metal-catalyzed insertion polymerization;(2f,19) the reported synthesis of the former occurred with poor regioselectivity and low yield (3%). Also note that competing methods to generate polyfluoroaromatics analogous to 27 and 29, such as by direct arylation or oxidative cross-coupling,(4a−c) have been developed but have a tendency to generate product mixtures, occur under harsher conditions, and/or require stoichiometric metal additives. Lastly, compounds representative of privileged motifs in organic electronic materials, such as (oligo)thiophene, pyrene, benzothiadiazole, and 9,9-dioctylfluorene fragments (2933),(20) successfully underwent polyhaloarylation with excellent isolated yields (92%–99%).

Scheme 2

Scheme 2. Polyfluoroarylation of Brom(hetero)arenesa

aIsolated yields. bpinacol (1.1–1.3 equiv) added. cArFBPin (2.2 equiv), Na2SO4·10H2O (0.24 equiv), no added H2O.

In summary, the first general SMC of unstable polyfluoroaryl boronic acids and pinacol esters with bromo(hetero)arenes has been developed. The bench-stable and easily accessible “on-cycle” precatalyst Pd(PAd3)(p-FC6H4)Br (1-Br), which can instantaneously enter the catalytic cycle, even in the absence of strong base or nucleophile, is central to the success of this method. Control of boron speciation was also critical to tame the relative rate of base-promoted protodeboronation versus cross-coupling with sensitive boronic acids. The fast rt reactions that we observe using the boronic acid pinacol esters also contrast the generally sluggish reactivity of this reagent class in most coupling methods, which highlights the excellent reactivity of PAd3-coordinated complexes. The synthesis of diverse polyfluoro(hetero)aromatic motifs common in organic electronics was also demonstrated in consistently high yield. This work further substantiates the notion that efficient catalytic SMC is possible even under nonbasic or weakly basic conditions by exploiting catalysts that are more reactive toward transmetalation.

Supporting Information

ARTICLE SECTIONS
Jump To

The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acscatal.8b00341.

  • Experimental procedures and spectral data for new compounds (PDF)

Terms & Conditions

Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

Author Information

ARTICLE SECTIONS
Jump To

  • Corresponding Author
  • Authors
    • Liye Chen - Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
    • Haydn Francis - Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
  • Notes
    The authors declare the following competing financial interest(s): A patent was filed by Princeton University: Carrow, B. P.; Chen, L. WO2017/075581 A1, May 4, 2017.

Acknowledgments

ARTICLE SECTIONS
Jump To

Financial support was provided by Princeton University.

References

ARTICLE SECTIONS
Jump To

This article references 20 other publications.

  1. 1
    (a) Tang, M. L.; Bao, Z. Halogenated Materials as Organic Semiconductors. Chem. Mater. 2011, 23, 446455,  DOI: 10.1021/cm102182x .
    (b) Babudri, F.; Farinola, G. M.; Naso, F.; Ragni, R. Fluorinated organic materials for electronic and optoelectronic applications: the role of the fluorine atom. Chem. Commun. 2007, 10031022,  DOI: 10.1039/B611336B
  2. 2
    (a) Tsuzuki, T.; Shirasawa, N.; Suzuki, T.; Tokito, S. Color Tunable Organic Light-Emitting Diodes Using Pentafluorophenyl-Substituted Iridium Complexes. Adv. Mater. 2003, 15, 14551458,  DOI: 10.1002/adma.200305034 .
    (b) Heidenhain, S. B.; Sakamoto, Y.; Suzuki, T.; Miura, A.; Fujikawa, H.; Mori, T.; Tokito, S.; Taga, Y. Perfluorinated Oligo(p-Phenylene)s: Efficient n-Type Semiconductors for Organic Light-Emitting Diodes. J. Am. Chem. Soc. 2000, 122, 1024010241,  DOI: 10.1021/ja002309o .
    (c) Sakamoto, Y.; Suzuki, T.; Miura, A.; Fujikawa, H.; Tokito, S.; Taga, Y. Synthesis, Characterization, and Electron-Transport Property of Perfluorinated Phenylene Dendrimers. J. Am. Chem. Soc. 2000, 122, 18321833,  DOI: 10.1021/ja994083z .
    (d) Yoon, M.-H.; Facchetti, A.; Stern, C. E.; Marks, T. J. Fluorocarbon-Modified Organic Semiconductors: Molecular Architecture, Electronic, and Crystal Structure Tuning of Arene- versus Fluoroarene–Thiophene Oligomer Thin-Film Properties. J. Am. Chem. Soc. 2006, 128, 57925801,  DOI: 10.1021/ja060016a .
    (e) Lu, W.; Kuwabara, J.; Kanbara, T. Polycondensation of Dibromofluorene Analogues with Tetrafluorobenzene via Direct Arylation. Macromolecules 2011, 44, 12521255,  DOI: 10.1021/ma1028517 .
    (f) Gates, D. P.; Svejda, S. A.; Oñate, E.; Killian, C. M.; Johnson, L. K.; White, P. S.; Brookhart, M. Synthesis of Branched Polyethylene Using (α-Diimine)nickel(II) Catalysts: Influence of Temperature, Ethylene Pressure, and Ligand Structure on Polymer Properties. Macromolecules 2000, 33, 23202334,  DOI: 10.1021/ma991234+ .
    (g) Chen, Y.-X.; Metz, M. V.; Li, L.; Stern, C. L.; Marks, T. J. Sterically Encumbered (Perfluoroaryl) Borane and Aluminate Cocatalysts for Tuning Cation–Anion Ion Pair Structure and Reactivity in Metallocene Polymerization Processes. A Synthetic, Structural, and Polymerization Study. J. Am. Chem. Soc. 1998, 120, 62876305,  DOI: 10.1021/ja973769t .
    (h) Facchetti, A.; Yoon, M.-H.; Stern, C. L.; Katz, H. E.; Marks, T. J. Building Blocks for n-Type Organic Electronics: Regiochemically Modulated Inversion of Majority Carrier Sign in Perfluoroarene-Modified Polythiophene Semiconductors. Angew. Chem., Int. Ed. 2003, 42, 39003903,  DOI: 10.1002/anie.200351253 .
    (i) Zhou, H.; Yang, L.; Stuart, A. C.; Price, S. C.; Liu, S.; You, W. Development of Fluorinated Benzothiadiazole as a Structural Unit for a Polymer Solar Cell of 7% Efficiency. Angew. Chem., Int. Ed. 2011, 50, 29952998,  DOI: 10.1002/anie.201005451 .
    (j) Kelly, M. A.; Roland, S.; Zhang, Q.; Lee, Y.; Kabius, B.; Wang, Q.; Gomez, E. D.; Neher, D.; You, W. Incorporating Fluorine Substitution into Conjugated Polymers for Solar Cells: Three Different Means, Same Results. J. Phys. Chem. C 2017, 121, 20592068,  DOI: 10.1021/acs.jpcc.6b10993 .
    (k) Fei, Z.; Boufflet, P.; Wood, S.; Wade, J.; Moriarty, J.; Gann, E.; Ratcliff, E. L.; McNeill, C. R.; Sirringhaus, H.; Kim, J.-S.; Heeney, M. Influence of Backbone Fluorination in Regioregular Poly(3-alkyl-4-fluoro)thiophenes. J. Am. Chem. Soc. 2015, 137, 68666879,  DOI: 10.1021/jacs.5b02785
  3. 3
    (a) Cox, P. A.; Reid, M.; Leach, A. G.; Campbell, A. D.; King, E. J.; Lloyd-Jones, G. C. Base-Catalyzed Aryl-B(OH)2 Protodeboronation Revisited: From Concerted Proton Transfer to Liberation of a Transient Aryl Anion. J. Am. Chem. Soc. 2017, 139, 1315613165,  DOI: 10.1021/jacs.7b07444 .
    (b) Frohn, H. J.; Adonin, N. Y.; Bardin, V. V.; Starichenko, V. F. Polyfluoroorganoboron-Oxygen Compounds. 2 [1] Base-catalysed Hydrodeboration of Polyfluorophenyl(dihydroxy)boranes. Z. Anorg. Allg. Chem. 2002, 628, 28342838,  DOI: 10.1002/1521-3749(200213)628:13<2834::AID-ZAAC2834>3.0.CO;2-2 .
    (c) Lozada, J.; Liu, Z.; Perrin, D. M. Base-Promoted Protodeboronation of 2,6-Disubstituted Arylboronic Acids. J. Org. Chem. 2014, 79, 53655368,  DOI: 10.1021/jo500734z .
    (d) Cox, P. A.; Leach, A. G.; Campbell, A. D.; Lloyd-Jones, G. C. Protodeboronation of Heteroaromatic, Vinyl, and Cyclopropyl Boronic Acids: pH–Rate Profiles, Autocatalysis, and Disproportionation. J. Am. Chem. Soc. 2016, 138, 91459157,  DOI: 10.1021/jacs.6b03283
  4. 4

    For alternatives to SMC for polyfluoroarylation, see:

    (a) Lafrance, M.; Rowley, C. N.; Woo, T. K.; Fagnou, K. Catalytic Intermolecular Direct Arylation of Perfluorobenzenes. J. Am. Chem. Soc. 2006, 128, 87548756,  DOI: 10.1021/ja062509l .
    (b) Do, H.-Q.; Daugulis, O. Copper-Catalyzed Arylation and Alkenylation of Polyfluoroarene C–H Bonds. J. Am. Chem. Soc. 2008, 130, 11281129,  DOI: 10.1021/ja077862l .
    (c) He, C.-Y.; Fan, S.; Zhang, X. Pd-Catalyzed Oxidative Cross-Coupling of Perfluoroarenes with Aromatic Heterocycles. J. Am. Chem. Soc. 2010, 132, 1285012852,  DOI: 10.1021/ja106046p .
    (d) Shang, R.; Fu, Y.; Wang, Y.; Xu, Q.; Yu, H.-Z.; Liu, L. Copper-Catalyzed Decarboxylative Cross-Coupling of Potassium Polyfluorobenzoates with Aryl Iodides and Bromides. Angew. Chem., Int. Ed. 2009, 48, 93509354,  DOI: 10.1002/anie.200904916 .
    (e) Yang, Y.; Oldenhuis, N. J.; Buchwald, S. L. Mild and General Conditions for Negishi Cross-Coupling Enabled by the Use of Palladacycle Precatalysts. Angew. Chem., Int. Ed. 2013, 52, 615619,  DOI: 10.1002/anie.201207750 .
    (f) Martinelli, C.; Cardone, A.; Pinto, V.; Mastropasqua Talamo, M.; D’arienzo, M. L.; Mesto, E.; Schingaro, E.; Scordari, F.; Naso, F.; Musio, R.; Farinola, G. M. Synthesis and Structure of Conjugated Molecules with the Benzofulvene Core. Org. Lett. 2014, 16, 34243427,  DOI: 10.1021/ol5015366 .
    (g) Hofer, M.; Genoux, A.; Kumar, R.; Nevado, C. Gold-Catalyzed Direct Oxidative Arylation with Boron Coupling Partners. Angew. Chem., Int. Ed. 2017, 56, 10211025,  DOI: 10.1002/anie.201610457
  5. 5

    For coupling methods mediated by stoichiometric Cu or Ag, see:

    (a) Liebeskind, L. S.; Srogl, J. Thiol Ester–Boronic Acid Coupling. A Mechanistically Unprecedented and General Ketone Synthesis. J. Am. Chem. Soc. 2000, 122, 1126011261,  DOI: 10.1021/ja005613q .
    (b) Savarin, C.; Liebeskind, L. S. Nonbasic, Room Temperature, Palladium-Catalyzed Coupling of Aryl and Alkenyl Iodides with Boronic Acids Mediated by Copper(I) Thiophene-2-carboxylate (CuTC). Org. Lett. 2001, 3, 21492152,  DOI: 10.1021/ol010060p .
    (c) Korenaga, T.; Kosaki, T.; Fukumura, R.; Ema, T.; Sakai, T. Suzuki–Miyaura Coupling Reaction Using Pentafluorophenylboronic Acid. Org. Lett. 2005, 7, 49154917,  DOI: 10.1021/ol051866i .
    (d) Crowley, B. M.; Potteiger, C. M.; Deng, J. Z.; Prier, C. K.; Paone, D. V.; Burgey, C. S. Expanding the scope of the Cu assisted Suzuki–Miyaura reaction. Tetrahedron Lett. 2011, 52, 50555059,  DOI: 10.1016/j.tetlet.2011.07.088 .
    (e) Frohn, H. J.; Adonin, N. Y.; Bardin, V. V.; Starichenko, V. F. Highly efficient cross-coupling reactions with the perfluoroorganotrifluoroborate salts K [RFBF3] (RF = C6F5, CF2═CF). Tetrahedron Lett. 2002, 43, 81118114,  DOI: 10.1016/S0040-4039(02)01922-6
  6. 6
    Chen, L.; Sanchez, D. R.; Zhang, B.; Carrow, B. P. “Cationic” Suzuki–Miyaura Coupling with Acutely Base-Sensitive Boronic Acids. J. Am. Chem. Soc. 2017, 139, 1241812421,  DOI: 10.1021/jacs.7b07687
  7. 7

    For examples of SMC methods using fluoroarylboron reagents, see:

    (a) Kinzel, T.; Zhang, Y.; Buchwald, S. L. A New Palladium Precatalyst Allows for the Fast Suzuki–Miyaura Coupling Reactions of Unstable Polyfluorophenyl and 2-Heteroaryl Boronic Acids. J. Am. Chem. Soc. 2010, 132, 1407314075,  DOI: 10.1021/ja1073799 .
    (b) Molander, G. A.; Biolatto, B. Palladium-Catalyzed Suzuki–Miyaura Cross-Coupling Reactions of Potassium Aryl- and Heteroaryltrifluoroborates. J. Org. Chem. 2003, 68, 43024314,  DOI: 10.1021/jo0342368 .
    (c) Handa, S.; Wang, Y.; Gallou, F.; Lipshutz, B. H. Sustainable Fe–ppm Pd nanoparticle catalysis of Suzuki-Miyaura cross-couplings in water. Science 2015, 349, 1087,  DOI: 10.1126/science.aac6936 .
    (d) Handa, S.; Andersson, M. P.; Gallou, F.; Reilly, J.; Lipshutz, B. H. HandaPhos: A General Ligand Enabling Sustainable ppm Levels of Palladium-Catalyzed Cross-Couplings in Water at Room Temperature. Angew. Chem., Int. Ed. 2016, 55, 49144918,  DOI: 10.1002/anie.201510570 .
    (e) Kohlmann, J.; Braun, T.; Laubenstein, R.; Herrmann, R. Suzuki–Miyaura Cross-Coupling Reactions of Highly Fluorinated Arylboronic Esters: Catalytic Studies and Stoichiometric Model Reactions on the Transmetallation Step. Chem.—Eur. J. 2017, 23, 1221812232,  DOI: 10.1002/chem.201700549 .
    (f) Chen, L.; Ren, P.; Carrow, B. P. Tri(1-adamantyl)phosphine: Expanding the Boundary of Electron-Releasing Character Available to Organophosphorus Compounds. J. Am. Chem. Soc. 2016, 138, 63926395,  DOI: 10.1021/jacs.6b03215 .
    (g) Robbins, D. W.; Hartwig, J. F. A C–H Borylation Approach to Suzuki–Miyaura Coupling of Typically Unstable 2–Heteroaryl and Polyfluorophenyl Boronates. Org. Lett. 2012, 14, 42664269,  DOI: 10.1021/ol301570t .
    (h) Bulfield, D.; Huber, S. M. Synthesis of Polyflourinated Biphenyls; Pushing the Boundaries of Suzuki–Miyaura Cross Coupling with Electron-Poor Substrates. J. Org. Chem. 2017, 82, 1318813203,  DOI: 10.1021/acs.joc.7b02267
  8. 8
    (a) Miyaura, N. Cross-coupling reaction of organoboron compounds via base-assisted transmetalation to palladium(II) complexes. J. Organomet. Chem. 2002, 653, 5457,  DOI: 10.1016/S0022-328X(02)01264-0 .
    (b) Lennox, A. J. J.; Lloyd-Jones, G. C. Transmetalation in the Suzuki–Miyaura Coupling: The Fork in the Trail. Angew. Chem., Int. Ed. 2013, 52, 73627370,  DOI: 10.1002/anie.201301737
  9. 9
    (a) Stambuli, J. P.; Incarvito, C. D.; Bühl, M.; Hartwig, J. F. Synthesis, Structure, Theoretical Studies, and Ligand Exchange Reactions of Monomeric, T-Shaped Arylpalladium(II) Halide Complexes with an Additional, Weak Agostic Interaction. J. Am. Chem. Soc. 2004, 126, 11841194,  DOI: 10.1021/ja037928m .
    (b) Roy, A. H.; Hartwig, J. F. Directly Observed Reductive Elimination of Aryl Halides from Monomeric Arylpalladium(II) Halide Complexes. J. Am. Chem. Soc. 2003, 125, 1394413945,  DOI: 10.1021/ja037959h .
    (c) Yokoyama, A.; Suzuki, H.; Kubota, Y.; Ohuchi, K.; Higashimura, H.; Yokozawa, T. Chain-Growth Polymerization for the Synthesis of Polyfluorene via Suzuki–Miyaura Coupling Reaction from an Externally Added Initiator Unit. J. Am. Chem. Soc. 2007, 129, 72367237,  DOI: 10.1021/ja070313v .
    (d) Andersen, T. L.; Friis, S. D.; Audrain, H.; Nordeman, P.; Antoni, G.; Skrydstrup, T. Efficient 11C-Carbonylation of Isolated Aryl Palladium Complexes for PET: Application to Challenging Radiopharmaceutical Synthesis. J. Am. Chem. Soc. 2015, 137, 15481555,  DOI: 10.1021/ja511441u .
    (e) Vinogradova, E. V.; Zhang, C.; Spokoyny, A. M.; Pentelute, B. L.; Buchwald, S. L. Organometallic palladium reagents for cysteine bioconjugation. Nature 2015, 526, 687691,  DOI: 10.1038/nature15739 .
    (f) Lee, H. G.; Lautrette, G.; Pentelute, B. L.; Buchwald, S. L. Palladium-Mediated Arylation of Lysine in Unprotected Peptides. Angew. Chem., Int. Ed. 2017, 56, 31773181,  DOI: 10.1002/anie.201611202
  10. 10
    (a) Gildner, P. G.; Colacot, T. J. Reactions of the 21st Century: Two Decades of Innovative Catalyst Design for Palladium-Catalyzed Cross-Couplings. Organometallics 2015, 34, 54975508,  DOI: 10.1021/acs.organomet.5b00567 .
    (b) Hazari, N.; Melvin, P. R.; Beromi, M. M. Well-defined nickel and palladium precatalysts for cross-coupling. Nat. Rev. Chem. 2017, 1, 0025,  DOI: 10.1038/s41570-017-0025
  11. 11
    Synthesis of biarylphosphine-coordinated arylpalladium complexes in one step was recently reported. See:Ingoglia, B. T.; Buchwald, S. L. Oxidative Addition Complexes as Precatalysts for Cross-Coupling Reactions Requiring Extremely Bulky Biarylphosphine Ligands. Org. Lett. 2017, 19, 28532856,  DOI: 10.1021/acs.orglett.7b01082
  12. 12
    (a) Norton, D. M.; Mitchell, E. A.; Botros, N. R.; Jessop, P. G.; Baird, M. C. A Superior Precursor for Palladium(0)-Based Cross-Coupling and Other Catalytic Reactions. J. Org. Chem. 2009, 74, 66746680,  DOI: 10.1021/jo901121e .
    (b) Krause, J.; Cestaric, G.; Haack, K.-J.; Seevogel, K.; Storm, W.; Pörschke, K.-R. 1,6-Diene Complexes of Palladium(0) and Platinum(0): Highly Reactive Sources for the Naked Metals and [L–M0] Fragments. J. Am. Chem. Soc. 1999, 121, 98079823,  DOI: 10.1021/ja983939h
  13. 13
    Bruno, N. C.; Tudge, M. T.; Buchwald, S. L. Design and preparation of new palladium precatalysts for C–C and C–N cross-coupling reactions. Chem. Sci. 2013, 4, 916920,  DOI: 10.1039/C2SC20903A
  14. 14
    Halling, P. J. Salt hydrates for water activity control with biocatalysts in organic media. Biotechnol. Tech. 1992, 6, 271276,  DOI: 10.1007/BF02439357
  15. 15
    Phosphates have been used to control water release and boron speciation in SMC. See:Fyfe, J. W. B.; Valverde, E.; Seath, C. P.; Kennedy, A. R.; Redmond, J. M.; Anderson, N. A.; Watson, A. J. B. Speciation Control During Suzuki–Miyaura Cross-Coupling of Haloaryl and Haloalkenyl MIDA Boronic Esters. Chem.—Eur. J. 2015, 21, 89518964,  DOI: 10.1002/chem.201500970
  16. 16

    For another important example of a slow-release strategy in SMC using masked boron reagents, see:

    (a) Knapp, D. M.; Gillis, E. P.; Burke, M. D. A General Solution for Unstable Boronic Acids: Slow-Release Cross-Coupling from Air-Stable MIDA Boronates. J. Am. Chem. Soc. 2009, 131, 69616963,  DOI: 10.1021/ja901416p .
    (b) Dick, G. R.; Woerly, E. M.; Burke, M. D. A General Solution for the 2-Pyridyl Problem. Angew. Chem., Int. Ed. 2012, 51, 26672672,  DOI: 10.1002/anie.201108608
  17. 17
    (a) Marion, N.; Navarro, O.; Mei, J.; Stevens, E. D.; Scott, N. M.; Nolan, S. P. Modified (NHC)Pd(allyl)Cl (NHC = N-Heterocyclic Carbene) Complexes for Room-Temperature Suzuki–Miyaura and Buchwald–Hartwig Reactions. J. Am. Chem. Soc. 2006, 128, 41014111,  DOI: 10.1021/ja057704z .
    (b) Stambuli, J. P.; Kuwano, R.; Hartwig, J. F. Unparalleled Rates for the Activation of Aryl Chlorides and Bromides: Coupling with Amines and Boronic Acids in Minutes at Room Temperature. Angew. Chem., Int. Ed. 2002, 41, 47464748,  DOI: 10.1002/anie.200290036 .
    (c) O’Brien, C. J.; Kantchev, E. A. B.; Valente, C.; Hadei, N.; Chass, G. A.; Lough, A.; Hopkinson, A. C.; Organ, M. G. Easily Prepared Air- and Moisture-Stable Pd–NHC (NHC = N-Heterocyclic Carbene) Complexes: A Reliable, User-Friendly, Highly Active Palladium Precatalyst for the Suzuki–Miyaura Reaction. Chem.—Eur. J. 2006, 12, 47434748,  DOI: 10.1002/chem.200600251
  18. 18
    Düfert, M. A.; Billingsley, K. L.; Buchwald, S. L. Suzuki–Miyaura Cross-Coupling of Unprotected, Nitrogen-Rich Heterocycles: Substrate Scope and Mechanistic Investigation. J. Am. Chem. Soc. 2013, 135, 1287712885,  DOI: 10.1021/ja4064469
  19. 19
    Wang, J.; Yao, E.; Chen, Z.; Ma, Y. Fluorinated Nickel(II) Phenoxyiminato Catalysts: Exploring the Role of Fluorine Atoms in Controlling Polyethylene Productivities and Microstructures. Macromolecules 2015, 48, 55045510,  DOI: 10.1021/acs.macromol.5b01090
  20. 20
    (a) Matharu, A. S.; Cowling, S. J.; Wright, G. Laterally fluorinated liquid crystals containing the 2,2′-bithiophene moiety. Liq. Cryst. 2007, 34, 489506,  DOI: 10.1080/02678290601176559 .
    (b) Hu, P.; Lee, S.; Herng, T. S.; Aratani, N.; Gonçalves, T. P.; Qi, Q.; Shi, X.; Yamada, H.; Huang, K.-W.; Ding, J.; Kim, D.; Wu, J. Toward Tetraradicaloid: The Effect of Fusion Mode on Radical Character and Chemical Reactivity. J. Am. Chem. Soc. 2016, 138, 10651077,  DOI: 10.1021/jacs.5b12532 .
    (c) Kato, S.-i.; Matsumoto, T.; Shigeiwa, M.; Gorohmaru, H.; Maeda, S.; Ishi-i, T.; Mataka, S. Novel 2,1,3-Benzothiadiazole-Based Red-Fluorescent Dyes with Enhanced Two-Photon Absorption Cross-Sections. Chem.—Eur. J. 2006, 12, 23032317,  DOI: 10.1002/chem.200500921 .
    (d) Wu, C.; Zhanfeng, L.; Bo, J.; Xun, H. China Patent CN103289675A, June 6, 2017.

Cited By


This article is cited by 27 publications.

  1. Naeem Iqbal, Da Seul Lee, Hoimin Jung, Eun Jin Cho. Synergistic Effects of Boron and Oxygen Interaction Enabling Nickel-Catalyzed Exogenous Base-Free Stereoselective Arylvinylation of Alkynes through Vinyl Transposition. ACS Catalysis 2021, 11 (9) , 5017-5025. https://doi.org/10.1021/acscatal.1c00536OpenURL UNIV OF HOUSTON MAIN
  2. Hong-Chao Liu, Yuke Li, Xiao-Ping Gong, Zhi-Jie Niu, Yu-Zhao Wang, Ming Li, Wei-Yu Shi, Zhe Zhang, Yong-Min Liang. Cu-Catalyzed Direct C–H Alkylation of Polyfluoroarenes via Remote C(sp3)–H Functionalization in Carboxamides. Organic Letters 2021, 23 (7) , 2693-2698. https://doi.org/10.1021/acs.orglett.1c00586OpenURL UNIV OF HOUSTON MAIN
  3. Sii Hong Lau, Peng Yu, Liye Chen, Christina B. Madsen-Duggan, Michael J. Williams, Brad P. Carrow. Aryl Amination Using Soluble Weak Base Enabled by a Water-Assisted Mechanism. Journal of the American Chemical Society 2020, 142 (47) , 20030-20039. https://doi.org/10.1021/jacs.0c09275OpenURL UNIV OF HOUSTON MAIN
  4. Fumiya Hirakawa, Hiroshi Nakagawa, Shunya Honda, Shintaro Ishida, Takeaki Iwamoto. Trialkylphosphines Having a Bulky Phosphacyclopentane Backbone: Structural and Redox Properties Depending on the Exocyclic Alkyl Groups and EPR Observation of a Persistent Trialkylphosphine Radical Cation. The Journal of Organic Chemistry 2020, 85 (22) , 14634-14642. https://doi.org/10.1021/acs.joc.0c01393OpenURL UNIV OF HOUSTON MAIN
  5. Koji Kubota, Rikuro Takahashi, Minami Uesugi, Hajime Ito. A Glove-Box- and Schlenk-Line-Free Protocol for Solid-State C–N Cross-Coupling Reactions Using Mechanochemistry. ACS Sustainable Chemistry & Engineering 2020, 8 (44) , 16577-16582. https://doi.org/10.1021/acssuschemeng.0c05834OpenURL UNIV OF HOUSTON MAIN
  6. Huaiyuan Hu, Corrie E. Burlas, Sabrina J. Curley, Tomasz Gruchala, Fengrui Qu, Kevin H. Shaughnessy. Effect of Aryl Ligand Identity on Catalytic Performance of Trineopentylphosphine Arylpalladium Complexes in N-Arylation Reactions. Organometallics 2020, 39 (20) , 3618-3627. https://doi.org/10.1021/acs.organomet.0c00140OpenURL UNIV OF HOUSTON MAIN
  7. Scott D. McCann, Elaine C. Reichert, Pedro Luis Arrechea, Stephen L. Buchwald. Development of an Aryl Amination Catalyst with Broad Scope Guided by Consideration of Catalyst Stability. Journal of the American Chemical Society 2020, 142 (35) , 15027-15037. https://doi.org/10.1021/jacs.0c06139OpenURL UNIV OF HOUSTON MAIN
  8. Florian D’Accriscio, Alexia Ohleier, Emmanuel Nicolas, Matthieu Demange, Olivier Thillaye Du Boullay, Nathalie Saffon-Merceron, Marie Fustier-Boutignon, Elixabete Rezabal, Gilles Frison, Noel Nebra, Nicolas Mézailles. [(dcpp)Ni(η2-Arene)] Precursors: Synthesis, Reactivity, and Catalytic Application to the Suzuki–Miyaura Reaction. Organometallics 2020, 39 (10) , 1688-1699. https://doi.org/10.1021/acs.organomet.9b00834OpenURL UNIV OF HOUSTON MAIN
  9. Thomas Barber, Stephen P. Argent, Liam T. Ball. Expanding Ligand Space: Preparation, Characterization, and Synthetic Applications of Air-Stable, Odorless Di-tert-alkylphosphine Surrogates. ACS Catalysis 2020, 10 (10) , 5454-5461. https://doi.org/10.1021/acscatal.0c01414OpenURL UNIV OF HOUSTON MAIN
  10. Amit Dahiya, Christoph Fricke, Franziska Schoenebeck. Gold-Catalyzed Chemoselective Couplings of Polyfluoroarenes with Aryl Germanes and Downstream Diversification. Journal of the American Chemical Society 2020, 142 (17) , 7754-7759. https://doi.org/10.1021/jacs.0c02860OpenURL UNIV OF HOUSTON MAIN
  11. Huaiyuan Hu, Monica Vasiliu, Trent H. Stein, Fengrui Qu, Deidra L. Gerlach, David A. Dixon, Kevin H. Shaughnessy. Synthesis, Structural Characterization, and Coordination Chemistry of (Trineopentylphosphine)palladium(aryl)bromide Dimer Complexes ([(Np3P)Pd(Ar)Br]2). Inorganic Chemistry 2019, 58 (19) , 13299-13313. https://doi.org/10.1021/acs.inorgchem.9b02164OpenURL UNIV OF HOUSTON MAIN
  12. Louis-Charles Campeau, Nilay Hazari. Cross-Coupling and Related Reactions: Connecting Past Success to the Development of New Reactions for the Future. Organometallics 2019, 38 (1) , 3-35. https://doi.org/10.1021/acs.organomet.8b00720OpenURL UNIV OF HOUSTON MAIN
  13. Amanda K. Leone, Emily A. Mueller, Anne J. McNeil. The History of Palladium-Catalyzed Cross-Couplings Should Inspire the Future of Catalyst-Transfer Polymerization. Journal of the American Chemical Society 2018, 140 (45) , 15126-15139. https://doi.org/10.1021/jacs.8b09103OpenURL UNIV OF HOUSTON MAIN
  14. Koji Kubota, Hajime Ito. Development of Selective Reactions Using Ball Milling. Journal of Synthetic Organic Chemistry, Japan 2021, 79 (5) , 492-502. https://doi.org/10.5059/yukigoseikyokaishi.79.492OpenURL UNIV OF HOUSTON MAIN
  15. Yudha P. Budiman, Stephen A. Westcott, Udo Radius, Todd B. Marder. Fluorinated Aryl Boronates as Building Blocks in Organic Synthesis. Advanced Synthesis & Catalysis 2021, 363 (9) , 2224-2255. https://doi.org/10.1002/adsc.202001291OpenURL UNIV OF HOUSTON MAIN
  16. Italo A. Sanhueza, Felix J. R. Klauck, Erdem Senol, Sinead T. Keaveney, Theresa Sperger, Franziska Schoenebeck. Base‐Free Cross‐Couplings of Aryl Diazonium Salts in Methanol: Pd II –Alkoxy as Reactivity‐Controlling Intermediate. Angewandte Chemie 2021, 133 (13) , 7083-7088. https://doi.org/10.1002/ange.202014842OpenURL UNIV OF HOUSTON MAIN
  17. Italo A. Sanhueza, Felix J. R. Klauck, Erdem Senol, Sinead T. Keaveney, Theresa Sperger, Franziska Schoenebeck. Base‐Free Cross‐Couplings of Aryl Diazonium Salts in Methanol: Pd II –Alkoxy as Reactivity‐Controlling Intermediate. Angewandte Chemie International Edition 2021, 60 (13) , 7007-7012. https://doi.org/10.1002/anie.202014842OpenURL UNIV OF HOUSTON MAIN
  18. Yudha P. Budiman, Sabine Lorenzen, Zhiqiang Liu, Udo Radius, Todd B. Marder. Base‐Free Pd‐Catalyzed C−Cl Borylation of Fluorinated Aryl Chlorides. Chemistry – A European Journal 2021, 27 (11) , 3869-3874. https://doi.org/10.1002/chem.202004648OpenURL UNIV OF HOUSTON MAIN
  19. Xuanyi Li, Yinqiu Xu, Hequan Yao, Kejiang Lin. Chemical space exploration based on recurrent neural networks: applications in discovering kinase inhibitors. Journal of Cheminformatics 2020, 12 (1) https://doi.org/10.1186/s13321-020-00446-3OpenURL UNIV OF HOUSTON MAIN
  20. Vladislav A. Voloshkin, Marina Saab, Kristof Van Hecke, Sii Hong Lau, Bradley P. Carrow, Steven P. Nolan. Synthesis, reactivity and catalytic activity of Au-PAd 3 complexes. Dalton Transactions 2020, 49 (39) , 13872-13879. https://doi.org/10.1039/D0DT03330HOpenURL UNIV OF HOUSTON MAIN
  21. Knut Tormodssønn Hylland, Sigurd Øien‐Ødegaard, Mats Tilset. The Suzuki–Miyaura Cross‐Coupling as the Key Step in the Synthesis of 2‐Aminobiphenyls and 2,2'‐Diaminobiphenyls: Application in the Synthesis of Schiff Base Complexes of Zn. European Journal of Organic Chemistry 2020, 2020 (27) , 4208-4226. https://doi.org/10.1002/ejoc.202000599OpenURL UNIV OF HOUSTON MAIN
  22. Kevin H. Shaughnessy. Monodentate Trialkylphosphines: Privileged Ligands in Metal-catalyzed Crosscoupling Reactions. Current Organic Chemistry 2020, 24 (3) , 231-264. https://doi.org/10.2174/1385272824666200211114540OpenURL UNIV OF HOUSTON MAIN
  23. Wengang Xu, Heming Jiang, Jing Leng, Han‐Wee Ong, Jie Wu. Visible‐Light‐Induced Selective Defluoroborylation of Polyfluoroarenes, gem ‐Difluoroalkenes, and Trifluoromethylalkenes. Angewandte Chemie International Edition 2020, 59 (10) , 4009-4016. https://doi.org/10.1002/anie.201911819OpenURL UNIV OF HOUSTON MAIN
  24. Wengang Xu, Heming Jiang, Jing Leng, Han‐Wee Ong, Jie Wu. Visible‐Light‐Induced Selective Defluoroborylation of Polyfluoroarenes, gem ‐Difluoroalkenes, and Trifluoromethylalkenes. Angewandte Chemie 2020, 132 (10) , 4038-4045. https://doi.org/10.1002/ange.201911819OpenURL UNIV OF HOUSTON MAIN
  25. Kevin H. Shaughnessy. Development of Palladium Precatalysts that Efficiently Generate LPd(0) Active Species. Israel Journal of Chemistry 2020, 60 (3-4) , 180-194. https://doi.org/10.1002/ijch.201900067OpenURL UNIV OF HOUSTON MAIN
  26. Alexander B. Pagett, Guy C. Lloyd‐Jones. Suzuki–Miyaura Cross‐Coupling. 2019,,, 547-620. https://doi.org/10.1002/0471264180.or100.09OpenURL UNIV OF HOUSTON MAIN
  27. Christian A. Malapit, James R. Bour, Conor E. Brigham, Melanie S. Sanford. Base-free nickel-catalysed decarbonylative Suzuki–Miyaura coupling of acid fluorides. Nature 2018, 563 (7729) , 100-104. https://doi.org/10.1038/s41586-018-0628-7OpenURL UNIV OF HOUSTON MAIN
  • Abstract

    Figure 1

    Figure 1. Illustrative examples of polyfluoroaromatic motifs in materials and catalysts.

    Scheme 1

    Scheme 1. Scope of SMC with Polyhaloarylboron Reagentsa

    aIsolated yields. bConditions described in Table 1, entry 11. cArFB(OH)2 (1.3 equiv), pinacol (1.3 equiv), MgSO4 (1.5 equiv), no added H2O. dArFB(OH)2 (1.1 equiv), pinacol (1.1 equiv), Na2SO4·10H2O (1 equiv), no added H2O.

    Scheme 2

    Scheme 2. Polyfluoroarylation of Brom(hetero)arenesa

    aIsolated yields. bpinacol (1.1–1.3 equiv) added. cArFBPin (2.2 equiv), Na2SO4·10H2O (0.24 equiv), no added H2O.

  • References

    ARTICLE SECTIONS
    Jump To

    This article references 20 other publications.

    1. 1
      (a) Tang, M. L.; Bao, Z. Halogenated Materials as Organic Semiconductors. Chem. Mater. 2011, 23, 446455,  DOI: 10.1021/cm102182x .
      (b) Babudri, F.; Farinola, G. M.; Naso, F.; Ragni, R. Fluorinated organic materials for electronic and optoelectronic applications: the role of the fluorine atom. Chem. Commun. 2007, 10031022,  DOI: 10.1039/B611336B
    2. 2
      (a) Tsuzuki, T.; Shirasawa, N.; Suzuki, T.; Tokito, S. Color Tunable Organic Light-Emitting Diodes Using Pentafluorophenyl-Substituted Iridium Complexes. Adv. Mater. 2003, 15, 14551458,  DOI: 10.1002/adma.200305034 .
      (b) Heidenhain, S. B.; Sakamoto, Y.; Suzuki, T.; Miura, A.; Fujikawa, H.; Mori, T.; Tokito, S.; Taga, Y. Perfluorinated Oligo(p-Phenylene)s: Efficient n-Type Semiconductors for Organic Light-Emitting Diodes. J. Am. Chem. Soc. 2000, 122, 1024010241,  DOI: 10.1021/ja002309o .
      (c) Sakamoto, Y.; Suzuki, T.; Miura, A.; Fujikawa, H.; Tokito, S.; Taga, Y. Synthesis, Characterization, and Electron-Transport Property of Perfluorinated Phenylene Dendrimers. J. Am. Chem. Soc. 2000, 122, 18321833,  DOI: 10.1021/ja994083z .
      (d) Yoon, M.-H.; Facchetti, A.; Stern, C. E.; Marks, T. J. Fluorocarbon-Modified Organic Semiconductors: Molecular Architecture, Electronic, and Crystal Structure Tuning of Arene- versus Fluoroarene–Thiophene Oligomer Thin-Film Properties. J. Am. Chem. Soc. 2006, 128, 57925801,  DOI: 10.1021/ja060016a .
      (e) Lu, W.; Kuwabara, J.; Kanbara, T. Polycondensation of Dibromofluorene Analogues with Tetrafluorobenzene via Direct Arylation. Macromolecules 2011, 44, 12521255,  DOI: 10.1021/ma1028517 .
      (f) Gates, D. P.; Svejda, S. A.; Oñate, E.; Killian, C. M.; Johnson, L. K.; White, P. S.; Brookhart, M. Synthesis of Branched Polyethylene Using (α-Diimine)nickel(II) Catalysts: Influence of Temperature, Ethylene Pressure, and Ligand Structure on Polymer Properties. Macromolecules 2000, 33, 23202334,  DOI: 10.1021/ma991234+ .
      (g) Chen, Y.-X.; Metz, M. V.; Li, L.; Stern, C. L.; Marks, T. J. Sterically Encumbered (Perfluoroaryl) Borane and Aluminate Cocatalysts for Tuning Cation–Anion Ion Pair Structure and Reactivity in Metallocene Polymerization Processes. A Synthetic, Structural, and Polymerization Study. J. Am. Chem. Soc. 1998, 120, 62876305,  DOI: 10.1021/ja973769t .
      (h) Facchetti, A.; Yoon, M.-H.; Stern, C. L.; Katz, H. E.; Marks, T. J. Building Blocks for n-Type Organic Electronics: Regiochemically Modulated Inversion of Majority Carrier Sign in Perfluoroarene-Modified Polythiophene Semiconductors. Angew. Chem., Int. Ed. 2003, 42, 39003903,  DOI: 10.1002/anie.200351253 .
      (i) Zhou, H.; Yang, L.; Stuart, A. C.; Price, S. C.; Liu, S.; You, W. Development of Fluorinated Benzothiadiazole as a Structural Unit for a Polymer Solar Cell of 7% Efficiency. Angew. Chem., Int. Ed. 2011, 50, 29952998,  DOI: 10.1002/anie.201005451 .
      (j) Kelly, M. A.; Roland, S.; Zhang, Q.; Lee, Y.; Kabius, B.; Wang, Q.; Gomez, E. D.; Neher, D.; You, W. Incorporating Fluorine Substitution into Conjugated Polymers for Solar Cells: Three Different Means, Same Results. J. Phys. Chem. C 2017, 121, 20592068,  DOI: 10.1021/acs.jpcc.6b10993 .
      (k) Fei, Z.; Boufflet, P.; Wood, S.; Wade, J.; Moriarty, J.; Gann, E.; Ratcliff, E. L.; McNeill, C. R.; Sirringhaus, H.; Kim, J.-S.; Heeney, M. Influence of Backbone Fluorination in Regioregular Poly(3-alkyl-4-fluoro)thiophenes. J. Am. Chem. Soc. 2015, 137, 68666879,  DOI: 10.1021/jacs.5b02785
    3. 3
      (a) Cox, P. A.; Reid, M.; Leach, A. G.; Campbell, A. D.; King, E. J.; Lloyd-Jones, G. C. Base-Catalyzed Aryl-B(OH)2 Protodeboronation Revisited: From Concerted Proton Transfer to Liberation of a Transient Aryl Anion. J. Am. Chem. Soc. 2017, 139, 1315613165,  DOI: 10.1021/jacs.7b07444 .
      (b) Frohn, H. J.; Adonin, N. Y.; Bardin, V. V.; Starichenko, V. F. Polyfluoroorganoboron-Oxygen Compounds. 2 [1] Base-catalysed Hydrodeboration of Polyfluorophenyl(dihydroxy)boranes. Z. Anorg. Allg. Chem. 2002, 628, 28342838,  DOI: 10.1002/1521-3749(200213)628:13<2834::AID-ZAAC2834>3.0.CO;2-2 .
      (c) Lozada, J.; Liu, Z.; Perrin, D. M. Base-Promoted Protodeboronation of 2,6-Disubstituted Arylboronic Acids. J. Org. Chem. 2014, 79, 53655368,  DOI: 10.1021/jo500734z .
      (d) Cox, P. A.; Leach, A. G.; Campbell, A. D.; Lloyd-Jones, G. C. Protodeboronation of Heteroaromatic, Vinyl, and Cyclopropyl Boronic Acids: pH–Rate Profiles, Autocatalysis, and Disproportionation. J. Am. Chem. Soc. 2016, 138, 91459157,  DOI: 10.1021/jacs.6b03283
    4. 4

      For alternatives to SMC for polyfluoroarylation, see:

      (a) Lafrance, M.; Rowley, C. N.; Woo, T. K.; Fagnou, K. Catalytic Intermolecular Direct Arylation of Perfluorobenzenes. J. Am. Chem. Soc. 2006, 128, 87548756,  DOI: 10.1021/ja062509l .
      (b) Do, H.-Q.; Daugulis, O. Copper-Catalyzed Arylation and Alkenylation of Polyfluoroarene C–H Bonds. J. Am. Chem. Soc. 2008, 130, 11281129,  DOI: 10.1021/ja077862l .
      (c) He, C.-Y.; Fan, S.; Zhang, X. Pd-Catalyzed Oxidative Cross-Coupling of Perfluoroarenes with Aromatic Heterocycles. J. Am. Chem. Soc. 2010, 132, 1285012852,  DOI: 10.1021/ja106046p .
      (d) Shang, R.; Fu, Y.; Wang, Y.; Xu, Q.; Yu, H.-Z.; Liu, L. Copper-Catalyzed Decarboxylative Cross-Coupling of Potassium Polyfluorobenzoates with Aryl Iodides and Bromides. Angew. Chem., Int. Ed. 2009, 48, 93509354,  DOI: 10.1002/anie.200904916 .
      (e) Yang, Y.; Oldenhuis, N. J.; Buchwald, S. L. Mild and General Conditions for Negishi Cross-Coupling Enabled by the Use of Palladacycle Precatalysts. Angew. Chem., Int. Ed. 2013, 52, 615619,  DOI: 10.1002/anie.201207750 .
      (f) Martinelli, C.; Cardone, A.; Pinto, V.; Mastropasqua Talamo, M.; D’arienzo, M. L.; Mesto, E.; Schingaro, E.; Scordari, F.; Naso, F.; Musio, R.; Farinola, G. M. Synthesis and Structure of Conjugated Molecules with the Benzofulvene Core. Org. Lett. 2014, 16, 34243427,  DOI: 10.1021/ol5015366 .
      (g) Hofer, M.; Genoux, A.; Kumar, R.; Nevado, C. Gold-Catalyzed Direct Oxidative Arylation with Boron Coupling Partners. Angew. Chem., Int. Ed. 2017, 56, 10211025,  DOI: 10.1002/anie.201610457
    5. 5

      For coupling methods mediated by stoichiometric Cu or Ag, see:

      (a) Liebeskind, L. S.; Srogl, J. Thiol Ester–Boronic Acid Coupling. A Mechanistically Unprecedented and General Ketone Synthesis. J. Am. Chem. Soc. 2000, 122, 1126011261,  DOI: 10.1021/ja005613q .
      (b) Savarin, C.; Liebeskind, L. S. Nonbasic, Room Temperature, Palladium-Catalyzed Coupling of Aryl and Alkenyl Iodides with Boronic Acids Mediated by Copper(I) Thiophene-2-carboxylate (CuTC). Org. Lett. 2001, 3, 21492152,  DOI: 10.1021/ol010060p .
      (c) Korenaga, T.; Kosaki, T.; Fukumura, R.; Ema, T.; Sakai, T. Suzuki–Miyaura Coupling Reaction Using Pentafluorophenylboronic Acid. Org. Lett. 2005, 7, 49154917,  DOI: 10.1021/ol051866i .
      (d) Crowley, B. M.; Potteiger, C. M.; Deng, J. Z.; Prier, C. K.; Paone, D. V.; Burgey, C. S. Expanding the scope of the Cu assisted Suzuki–Miyaura reaction. Tetrahedron Lett. 2011, 52, 50555059,  DOI: 10.1016/j.tetlet.2011.07.088 .
      (e) Frohn, H. J.; Adonin, N. Y.; Bardin, V. V.; Starichenko, V. F. Highly efficient cross-coupling reactions with the perfluoroorganotrifluoroborate salts K [RFBF3] (RF = C6F5, CF2═CF). Tetrahedron Lett. 2002, 43, 81118114,  DOI: 10.1016/S0040-4039(02)01922-6
    6. 6
      Chen, L.; Sanchez, D. R.; Zhang, B.; Carrow, B. P. “Cationic” Suzuki–Miyaura Coupling with Acutely Base-Sensitive Boronic Acids. J. Am. Chem. Soc. 2017, 139, 1241812421,  DOI: 10.1021/jacs.7b07687
    7. 7

      For examples of SMC methods using fluoroarylboron reagents, see:

      (a) Kinzel, T.; Zhang, Y.; Buchwald, S. L. A New Palladium Precatalyst Allows for the Fast Suzuki–Miyaura Coupling Reactions of Unstable Polyfluorophenyl and 2-Heteroaryl Boronic Acids. J. Am. Chem. Soc. 2010, 132, 1407314075,  DOI: 10.1021/ja1073799 .
      (b) Molander, G. A.; Biolatto, B. Palladium-Catalyzed Suzuki–Miyaura Cross-Coupling Reactions of Potassium Aryl- and Heteroaryltrifluoroborates. J. Org. Chem. 2003, 68, 43024314,  DOI: 10.1021/jo0342368 .
      (c) Handa, S.; Wang, Y.; Gallou, F.; Lipshutz, B. H. Sustainable Fe–ppm Pd nanoparticle catalysis of Suzuki-Miyaura cross-couplings in water. Science 2015, 349, 1087,  DOI: 10.1126/science.aac6936 .
      (d) Handa, S.; Andersson, M. P.; Gallou, F.; Reilly, J.; Lipshutz, B. H. HandaPhos: A General Ligand Enabling Sustainable ppm Levels of Palladium-Catalyzed Cross-Couplings in Water at Room Temperature. Angew. Chem., Int. Ed. 2016, 55, 49144918,  DOI: 10.1002/anie.201510570 .
      (e) Kohlmann, J.; Braun, T.; Laubenstein, R.; Herrmann, R. Suzuki–Miyaura Cross-Coupling Reactions of Highly Fluorinated Arylboronic Esters: Catalytic Studies and Stoichiometric Model Reactions on the Transmetallation Step. Chem.—Eur. J. 2017, 23, 1221812232,  DOI: 10.1002/chem.201700549 .
      (f) Chen, L.; Ren, P.; Carrow, B. P. Tri(1-adamantyl)phosphine: Expanding the Boundary of Electron-Releasing Character Available to Organophosphorus Compounds. J. Am. Chem. Soc. 2016, 138, 63926395,  DOI: 10.1021/jacs.6b03215 .
      (g) Robbins, D. W.; Hartwig, J. F. A C–H Borylation Approach to Suzuki–Miyaura Coupling of Typically Unstable 2–Heteroaryl and Polyfluorophenyl Boronates. Org. Lett. 2012, 14, 42664269,  DOI: 10.1021/ol301570t .
      (h) Bulfield, D.; Huber, S. M. Synthesis of Polyflourinated Biphenyls; Pushing the Boundaries of Suzuki–Miyaura Cross Coupling with Electron-Poor Substrates. J. Org. Chem. 2017, 82, 1318813203,  DOI: 10.1021/acs.joc.7b02267
    8. 8
      (a) Miyaura, N. Cross-coupling reaction of organoboron compounds via base-assisted transmetalation to palladium(II) complexes. J. Organomet. Chem. 2002, 653, 5457,  DOI: 10.1016/S0022-328X(02)01264-0 .
      (b) Lennox, A. J. J.; Lloyd-Jones, G. C. Transmetalation in the Suzuki–Miyaura Coupling: The Fork in the Trail. Angew. Chem., Int. Ed. 2013, 52, 73627370,  DOI: 10.1002/anie.201301737
    9. 9
      (a) Stambuli, J. P.; Incarvito, C. D.; Bühl, M.; Hartwig, J. F. Synthesis, Structure, Theoretical Studies, and Ligand Exchange Reactions of Monomeric, T-Shaped Arylpalladium(II) Halide Complexes with an Additional, Weak Agostic Interaction. J. Am. Chem. Soc. 2004, 126, 11841194,  DOI: 10.1021/ja037928m .
      (b) Roy, A. H.; Hartwig, J. F. Directly Observed Reductive Elimination of Aryl Halides from Monomeric Arylpalladium(II) Halide Complexes. J. Am. Chem. Soc. 2003, 125, 1394413945,  DOI: 10.1021/ja037959h .
      (c) Yokoyama, A.; Suzuki, H.; Kubota, Y.; Ohuchi, K.; Higashimura, H.; Yokozawa, T. Chain-Growth Polymerization for the Synthesis of Polyfluorene via Suzuki–Miyaura Coupling Reaction from an Externally Added Initiator Unit. J. Am. Chem. Soc. 2007, 129, 72367237,  DOI: 10.1021/ja070313v .
      (d) Andersen, T. L.; Friis, S. D.; Audrain, H.; Nordeman, P.; Antoni, G.; Skrydstrup, T. Efficient 11C-Carbonylation of Isolated Aryl Palladium Complexes for PET: Application to Challenging Radiopharmaceutical Synthesis. J. Am. Chem. Soc. 2015, 137, 15481555,  DOI: 10.1021/ja511441u .
      (e) Vinogradova, E. V.; Zhang, C.; Spokoyny, A. M.; Pentelute, B. L.; Buchwald, S. L. Organometallic palladium reagents for cysteine bioconjugation. Nature 2015, 526, 687691,  DOI: 10.1038/nature15739 .
      (f) Lee, H. G.; Lautrette, G.; Pentelute, B. L.; Buchwald, S. L. Palladium-Mediated Arylation of Lysine in Unprotected Peptides. Angew. Chem., Int. Ed. 2017, 56, 31773181,  DOI: 10.1002/anie.201611202
    10. 10
      (a) Gildner, P. G.; Colacot, T. J. Reactions of the 21st Century: Two Decades of Innovative Catalyst Design for Palladium-Catalyzed Cross-Couplings. Organometallics 2015, 34, 54975508,  DOI: 10.1021/acs.organomet.5b00567 .
      (b) Hazari, N.; Melvin, P. R.; Beromi, M. M. Well-defined nickel and palladium precatalysts for cross-coupling. Nat. Rev. Chem. 2017, 1, 0025,  DOI: 10.1038/s41570-017-0025
    11. 11
      Synthesis of biarylphosphine-coordinated arylpalladium complexes in one step was recently reported. See:Ingoglia, B. T.; Buchwald, S. L. Oxidative Addition Complexes as Precatalysts for Cross-Coupling Reactions Requiring Extremely Bulky Biarylphosphine Ligands. Org. Lett. 2017, 19, 28532856,  DOI: 10.1021/acs.orglett.7b01082
    12. 12
      (a) Norton, D. M.; Mitchell, E. A.; Botros, N. R.; Jessop, P. G.; Baird, M. C. A Superior Precursor for Palladium(0)-Based Cross-Coupling and Other Catalytic Reactions. J. Org. Chem. 2009, 74, 66746680,  DOI: 10.1021/jo901121e .
      (b) Krause, J.; Cestaric, G.; Haack, K.-J.; Seevogel, K.; Storm, W.; Pörschke, K.-R. 1,6-Diene Complexes of Palladium(0) and Platinum(0): Highly Reactive Sources for the Naked Metals and [L–M0] Fragments. J. Am. Chem. Soc. 1999, 121, 98079823,  DOI: 10.1021/ja983939h
    13. 13
      Bruno, N. C.; Tudge, M. T.; Buchwald, S. L. Design and preparation of new palladium precatalysts for C–C and C–N cross-coupling reactions. Chem. Sci. 2013, 4, 916920,  DOI: 10.1039/C2SC20903A
    14. 14
      Halling, P. J. Salt hydrates for water activity control with biocatalysts in organic media. Biotechnol. Tech. 1992, 6, 271276,  DOI: 10.1007/BF02439357
    15. 15
      Phosphates have been used to control water release and boron speciation in SMC. See:Fyfe, J. W. B.; Valverde, E.; Seath, C. P.; Kennedy, A. R.; Redmond, J. M.; Anderson, N. A.; Watson, A. J. B. Speciation Control During Suzuki–Miyaura Cross-Coupling of Haloaryl and Haloalkenyl MIDA Boronic Esters. Chem.—Eur. J. 2015, 21, 89518964,  DOI: 10.1002/chem.201500970
    16. 16

      For another important example of a slow-release strategy in SMC using masked boron reagents, see:

      (a) Knapp, D. M.; Gillis, E. P.; Burke, M. D. A General Solution for Unstable Boronic Acids: Slow-Release Cross-Coupling from Air-Stable MIDA Boronates. J. Am. Chem. Soc. 2009, 131, 69616963,  DOI: 10.1021/ja901416p .
      (b) Dick, G. R.; Woerly, E. M.; Burke, M. D. A General Solution for the 2-Pyridyl Problem. Angew. Chem., Int. Ed. 2012, 51, 26672672,  DOI: 10.1002/anie.201108608
    17. 17
      (a) Marion, N.; Navarro, O.; Mei, J.; Stevens, E. D.; Scott, N. M.; Nolan, S. P. Modified (NHC)Pd(allyl)Cl (NHC = N-Heterocyclic Carbene) Complexes for Room-Temperature Suzuki–Miyaura and Buchwald–Hartwig Reactions. J. Am. Chem. Soc. 2006, 128, 41014111,  DOI: 10.1021/ja057704z .
      (b) Stambuli, J. P.; Kuwano, R.; Hartwig, J. F. Unparalleled Rates for the Activation of Aryl Chlorides and Bromides: Coupling with Amines and Boronic Acids in Minutes at Room Temperature. Angew. Chem., Int. Ed. 2002, 41, 47464748,  DOI: 10.1002/anie.200290036 .
      (c) O’Brien, C. J.; Kantchev, E. A. B.; Valente, C.; Hadei, N.; Chass, G. A.; Lough, A.; Hopkinson, A. C.; Organ, M. G. Easily Prepared Air- and Moisture-Stable Pd–NHC (NHC = N-Heterocyclic Carbene) Complexes: A Reliable, User-Friendly, Highly Active Palladium Precatalyst for the Suzuki–Miyaura Reaction. Chem.—Eur. J. 2006, 12, 47434748,  DOI: 10.1002/chem.200600251
    18. 18
      Düfert, M. A.; Billingsley, K. L.; Buchwald, S. L. Suzuki–Miyaura Cross-Coupling of Unprotected, Nitrogen-Rich Heterocycles: Substrate Scope and Mechanistic Investigation. J. Am. Chem. Soc. 2013, 135, 1287712885,  DOI: 10.1021/ja4064469
    19. 19
      Wang, J.; Yao, E.; Chen, Z.; Ma, Y. Fluorinated Nickel(II) Phenoxyiminato Catalysts: Exploring the Role of Fluorine Atoms in Controlling Polyethylene Productivities and Microstructures. Macromolecules 2015, 48, 55045510,  DOI: 10.1021/acs.macromol.5b01090
    20. 20
      (a) Matharu, A. S.; Cowling, S. J.; Wright, G. Laterally fluorinated liquid crystals containing the 2,2′-bithiophene moiety. Liq. Cryst. 2007, 34, 489506,  DOI: 10.1080/02678290601176559 .
      (b) Hu, P.; Lee, S.; Herng, T. S.; Aratani, N.; Gonçalves, T. P.; Qi, Q.; Shi, X.; Yamada, H.; Huang, K.-W.; Ding, J.; Kim, D.; Wu, J. Toward Tetraradicaloid: The Effect of Fusion Mode on Radical Character and Chemical Reactivity. J. Am. Chem. Soc. 2016, 138, 10651077,  DOI: 10.1021/jacs.5b12532 .
      (c) Kato, S.-i.; Matsumoto, T.; Shigeiwa, M.; Gorohmaru, H.; Maeda, S.; Ishi-i, T.; Mataka, S. Novel 2,1,3-Benzothiadiazole-Based Red-Fluorescent Dyes with Enhanced Two-Photon Absorption Cross-Sections. Chem.—Eur. J. 2006, 12, 23032317,  DOI: 10.1002/chem.200500921 .
      (d) Wu, C.; Zhanfeng, L.; Bo, J.; Xun, H. China Patent CN103289675A, June 6, 2017.
  • Supporting Information

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acscatal.8b00341.

    • Experimental procedures and spectral data for new compounds (PDF)


    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

You’ve supercharged your research process with ACS and Mendeley!

STEP 1:
Click to create an ACS ID

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

MENDELEY PAIRING EXPIRED
Your Mendeley pairing has expired. Please reconnect

This website uses cookies to improve your user experience. By continuing to use the site, you are accepting our use of cookies. Read the ACS privacy policy.

CONTINUE