ACS Publications. Most Trusted. Most Cited. Most Read
CONTENT TYPES

Figure 1Loading Img

Tri(1-adamantyl)phosphine: Expanding the Boundary of Electron-Releasing Character Available to Organophosphorus Compounds

View Author Information
Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
Cite this: J. Am. Chem. Soc. 2016, 138, 20, 6392–6395
Publication Date (Web):May 10, 2016
https://doi.org/10.1021/jacs.6b03215
Copyright © 2016 American Chemical Society
Subscribed Access
Article Views
11047
Altmetric
-
Citations
LEARN ABOUT THESE METRICS
PDF (902 KB) OpenURL UNIV OF HOUSTON MAIN
Supporting Info (3)»

Abstract

We report here the remarkable properties of PAd3, a crystalline air-stable solid accessible through a scalable SN1 reaction. Spectroscopic data reveal that PAd3, benefiting from the polarizability inherent to large hydrocarbyl groups, exhibits unexpected electron releasing character that exceeds other alkylphosphines and falls within a range dominated by N-heterocyclic carbenes. Dramatic effects in catalysis are also enabled by PAd3 during Suzuki–Miyaura cross-coupling of chloro(hetero)arenes (40 examples) at low Pd loading, including the late-stage functionalization of commercial drugs. Exceptional space-time yields are demonstrated for the syntheses of industrial precursors to valsartan and boscalid from chloroarenes with ∼2 × 104 turnovers in 10 min.

The capacity of ancillary ligands to tune the activity, selectivity, and stability of homogeneous metal catalysts has played a central role in the development of many modern synthetic methods.(1) Phosphines constitute one of the most utilized among various ligand types due in large part to the sensitivity of the electron density and steric environment about phosphorus towards substituent perturbations. The many areas of synthetic chemistry that utilize organophosphines, including emerging fields such as organocatalysis,(2) bioorthogonal reactions,(3) nanomaterials,(4) polymerization,(5)and frustrated Lewis pairs,(6)could thus benefit from expansion of accessible stereoelectronic properties beyond classical boundaries. Several recent discoveries that highlight this potential include Alcarazo’s phosphine cations’ ability to greatly accelerate π-acid catalysis,(7) Radosevich’s T-shaped phosphines’ oxidative additions,(8) and Dielmann’s imidazolin-2-ylidenaminophosphines’ reversible CO2 fixation.(9)

Another enabling aspect of organophosphine chemistry has been the development of quantitative descriptors of their electronic and steric properties such as Tolman’s electronic parameter (TEP) and cone angle, respectively,(10) which aid both in mechanistic understanding and prediction of reactivity. A typical response of the TEP to increased α-carbon branching in the homoleptic series P{C[(H)3–n(CH3)n]}3 (n = 0–3) can be seen in Figure 1a (open circles). Tolman rationalized such a trend as arising from steric repulsion of larger substituents, which raises the HOMO energy as phosphorus adopts a more planar geometry (Figure 1b). However, a curious enhancement in donor strength that is not readily explained by geometric effects is evident for phosphines that possess alkyl substituents at the more distant β-position (e.g., PBu3 and PCy3) rather than β-methyl groups (e.g., PEt3 and P(i-Pr)3). We report here the first synthesis of tri(1-adamantyl)phosphine (PAd3), which appears to capitalize on this effect more than existing phosphines to access electron-releasing properties exceeding a boundary for organophosphines that has persisted over many decades.(11)

Figure 1

Figure 1. Examples of β–substituent effects on the (a) TEP and (b) geometry of homoleptic phosphines. (a) χ = νCO(A1) – 2056.1 cm–1 for Ni(CO)3(PR3). (b) From solid-state data for Au(PR3)Cl.(12)

Numerous syntheses of phosphines with two 1-adamantyl (Ad) substituents have been developed, many of which have found wide success in catalysis.(13) Installation of a third hindered Ad group, however, has remained challenging. In fact, any tri-tert-alkylphosphine for which all β-carbon positions are alkyl rather than methyl groups is, to the best of our knowledge, unprecedented. We found that reaction of ClPAd2 and AdMgBr in the presence of a CuI/LiBr catalyst(14) led to complete consumption of the electrophile over 15 h but gave only trace amounts of PAd3 (1). This is consistent with a noncatalyzed SN2 route attempted by Whitesides.(15) An alternative strategy (Scheme 1a) to forge the final hindered P–C bond in PAd3 that proved surprisingly facile involved instead an SN1 reaction with Ad cation.(16)A mixture of the commercial reagent HPAd2, AdOAc (1.1 equiv), and Me3SiOTf (1.2 equiv) cleanly generated protonated PAd3 over 24 h at rt.(17) Neutralization of 1·HOTf with Et3N formed a colorless precipitate, pure PAd3, that was simply filtered under air in good yield (63%) on a multigram scale. We were surprised to then discover that negligible oxidation of solid PAd3 occurred during storage under air over a period of three months, as determined from periodic analysis of aliquots by 31P NMR spectroscopy.(18) This behavior contrasts starkly with many other alkylphosphines that are air-sensitive and in the case of P(t-Bu)3, pyrophoric.

Scheme 1

Scheme 1. Synthesis and Properties of PAd3 (1)

Comparison of the Charton steric parameter (υ) for the Ad group (1.33) compared to, for instance, a t-Bu group (1.24) intuitively suggests that PAd3 should be more sterically hindered than other trialkylphosphines.(19) We thus synthesized (PAd3)AuCl (2) (Scheme 1b) and the air-stable cationic complex 4, prepared in one step by coordination of 1 to palladacycle 3 (Scheme 1c),(20) to quantitatively establish the steric properties of PAd3. The cone angle (θ) calculated from the solid-state structure of 2 (179°) is similar to the reported value for P(t-Bu)3 (182°).(10b) Similarly, the buried volume parameter (%Vbur) of PAd3 in 2 (40.5) calculated using the SambVca program(21) is close to that for P(t-Bu)3 (40.0) in an analogous gold complex.(10b, 22) Values for PAd3 in 4 (40.3) versus P(t-Bu)3 in Pd[P(t-Bu)3](Ph) (Br) (39.3)(23) are also similar. We thus conclude PAd3 and P(t-Bu)3 are best described as isosteric, which contrasts common proposals about the differences of Ad- and t-Bu-phosphine congeners.(24)

The electronic properties of PAd3 (Scheme 1d) were next established from the carbonyl stretching frequency of 5CO 1948.3 cm–1), which occurs at a uniquely low frequency among alkylphosphines. Analogous Rh complexes (S3S5) ligated by P(t-Bu)3CO 1956.4 cm–1), PAd2(n-Bu) (νCO 1956.9 cm–1), or PCy3CO 1958.7 cm–1) all exhibit distinctly higher frequencies indicative of reduced electron releasing ability of these compared to PAd3.(25) The TEP for PAd3 (2052.1 cm–1), indirectly calculated from the relationship between νCO for Ni(CO)3(L) and Rh(acac) (CO)(L) complexes (Figure S5),(26) is significantly red-shifted compared to P(t-Bu)3(2056.1 cm–1) and other alkylphosphines.(10a, 10c) In fact, PAd3 approaches a range typical of N-heterocyclic carbenes (e.g., IPr; 2051.5 cm–1)(27) that are generally regarded as superior σ donors to transition metals.(28) Additional theoretical and experimental data that corroborate this spectroscopic data include a higher calculated HOMO energy for PAd3 (+0.20 eV) relative to P(t-Bu)3, a larger pKαTHF of the conjugate acid of PAd3 (11.6) compared to P(t-Bu)3(10.7),(29) and a smaller 1J(31P-77Se) coupling constant for Ad3PSe (669.9 Hz) than for (t-Bu)3PSe (688.2 Hz).(30)

Several effects were considered that might account for the unique electronic properties of PAd3. The average Cα–Cβ bond length of PAd3 in 2 (1.551(4) Å) is slightly longer than the average Cβ–Cγ (1.537(4) Å) and Cγ–Cδ (1.530(4) Å) bond lengths. A hyperconjugative effect would be expected to contract the Cα–Cβ bonds,(31) which is clearly not the case. The sum of the C–P–C angles about PAd3 (332.6(4)°) determined from solid-state data for 2 are slightly less compared to P(t-Bu)3 in the analogous gold complex (335(3)°).(12a) The C–P–C angles in 4 and the known complex Pd[P(t-Bu)3](Ph)(Br) are also similar.(20) These data show that planarization of phosphorus also does not account for the properties of PAd3. However, London dispersion could explain the slight contraction of the C–P–C bond angles in PAd3,(11) and this possibility led us to further consider van der Waals forces.(11, 32) The larger Taft polarizability parameter (σα) of Ad (− 0.95) compared to t-Bu (− 0.75) indicates the former is better able to facilitate electron donation from phosphorus by stabilizing a more polarized P–M dative bond.(33) In fact, a general correlation is observed between σα and the TEP of a series of homoleptic alkylphosphines (eq 1). This correlation suggests to us that van der Waals forces might account for the trend that phosphines possessing large β-alkyl groups are more electron-releasing than the β-methyl analogues (Figure 1a).(11)(1)

Because transition states are generally more polarizable than are ground states,(34) we wanted to assess effects of PAd3 within a catalytic manifold. We chose as a challenging test case the room temperature Suzuki–Miyaura cross-coupling (SMC) of p-chloroanisole (0.50 mmol), 1-naphthylboronic acid (0.55 mmol), and KOH (1.1 mmol) in the presence of palladacycle 3 and a phosphine (0.05 mol % Pd; L/Pd = 1 in all cases) in THF/toluene (eq 2). The use of P(t-Bu)3, PAd2(n-Bu), or PCy3, each of which is used extensively for SMC,(35) led to low yields (<10%) of 1-(p-anisyl)naphthalene (6) over 8 h (Figure 2). In contrast, the reaction catalyzed by the combination of 3 and PAd3 under identical conditions proceeded to 99% yield within 4 h. The yield of 6 at 10 min (99%) using 0.25 mol % 3 and 0.5 mol % PAd3 corresponds to a turnover frequency (TOF) of 1.2 × 104 h–1 at rt even with this quintessential deactivated substrate for SMC; an analogous reaction using P(t-Bu)3 was slower and stalled at ∼33% yield (Figure S3). The reactivity of 3 and PAd3 compared favorably even head-to-head against state-of-the-art precatalysts such as SPhos-Pd G2, XPhos-Pd G3, and PEPPSI-IPr.(36) Note that these data only sample the ensemble of ligand effects on catalyst initiation, innate reactivity, and stability that affect the overall catalyst performance. We do believe the high reactivity of the PAd3-Pd catalyst in this SMC reflects the donicity and polarizability of PAd3, but a related PAd3-Pd complex (S1) was also found to be very stable toward cyclometalation (Figure S1). Thus, catalyst stability differences might also contribute to these observations.

Figure 2

Figure 2. Yield of 6 from reactions in eq 2. L/Pd = 1 in all cases.

The stark contrast of the catalytic effects of PAd3 versus, for instance, PAd2(n-Bu) in this SMC is surprising given the structural similarities. We considered that Tolman’s proposal of substituent additivity (eq 3)(10a) could be used to evaluate if in fact the number of Ad groups exerts a proportional effect on the phosphine properties. We thus determined χAd (eq 4) in PAd3 (− 1.3 cm–1), PAd2(n-Bu) (− 0.20 cm–1), and PAd2Bn (−1.0 cm–1) using known χR and TEP values.(10a) The variance in χAd indicates that, contrary to Tolman’s proposal,(10c) the influence of the Ad group is actually dependent on the exact phosphine structure and also that phosphorus apparently gains more electron density per Ad group in the case of PAd3.(3)(4)

Lastly, we broadened our investigation of the SMC to establish if PAd3-Pd catalysts might be broadly applicable at low Pd loading (≤0.1 mol %),(37) which is desirable for industrial applications yet remains challenging using chloroarenes.(38) A limited selection of solvents (THF, toluene, or n-BuOH) and bases (K3PO4 or K2CO3) using 4 as catalyst was sufficient to achieve high yields across 40 diverse combinations of chloro(hetero)arene and organoboronic acid. Representative examples are shown in Scheme 2 with the remainder listed in Figure S4. Complex 4 retained high activity in the presence of N-heteroaryl substrates including pyridine, pyrrole, pyrazine, pyrimidine, isoxazole, triazine, and thiadiazole fragments giving high yields within 1–12 h using 0.05–0.1 mol % [Pd]. Products from reactions with organoboron compounds that are notoriously sensitive to protodeboronation such as 2-pyrrolyl, 2-furyl, 2-thienyl, and 2,6-difluorophenyl boronic acids also formed in high yields even at low catalyst loadings.(39) Reactions that formed industrial precursors (7, 8) to valsartan and boscalid proceeded to high yield (95–97%) within 10 min at 100 °C using 0.005 mol % [Pd].(37b) These turnover numbers (TON) of ∼2 × 104 and exceptional TOFs exceeding 1 × 105h–1 highlight that high space-time yield are accessible using less reactive chloroarenes and low Pd loading. High TON within 1–5 h are also observed for reactions of N-heteroarenes (911). Lastly, functionalization by SMC of the C–Cl bond in haloperidol, fenofibrate, montelukast, glibenclamide, and 5-R-rivaroxaban with methyl, cyclopropyl, heteroaromatic, or fluoroaromatic fragments occurred in uniformly good yields (65–92%). We were very encouraged by the observations that PAd3, a simple compound readily prepared from inexpensive reagents, engenders catalytic properties rivaling some of the most important methods developed for SMC reactions.

Scheme 2

Scheme 2. Illustrative Examples of 4 as a General Catalyst for Suzuki–Miyaura Coupling of Chloro(hetero)arenesa

Scheme aSee SI for 28 additional examples and full experimental details.

Scheme bYield determined by NMR.

In conclusion, a facile and scalable synthesis of PAd3 has been developed. Spectroscopic data reveal PAd3 is significantly more donating than P(t-Bu)3, thus redefining the limit of electron-releasing character accessible to alkylphosphines that has persisted for half a century. Preliminary investigations to establish how the electronic properties and chemical stability of PAd3 might be leveraged revealed that a PAd3-palladacycle catalyzes Suzuki–Miyaura coupling of chloro(hetero)arenes with exceptional TOF and high TON. A strong correlation between the Tolman electronic and Taft σα parameters argues the special properties of PAd3 originate from the substantial polarizability inherent to large hydrocarbyl groups like adamantyl. These results support the hypothesis that access to phosphine steric or electronic properties beyond historical limits can enable unique reactivity in catalysis and also contribute to a growing number of examples for which weak van der Waals forces can in fact contribute significantly to both structure and reactivity.(11)

Supporting Information

ARTICLE SECTIONS
Jump To

The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/jacs.6b03215.

  • Experimental details and data (PDF)

  • Crystallographic data (CIF)

  • Crystallographic data (CIF)

Terms & Conditions

Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

Author Information

ARTICLE SECTIONS
Jump To

  • Corresponding Author
    • Brad P. Carrow - Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States Email: [email protected]
  • Authors
    • Liye Chen - Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
    • Peng Ren - Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
  • Notes
    The authors declare the following competing financial interest(s): A patent application was filed by Princeton University, which is not yet published.

Acknowledgment

ARTICLE SECTIONS
Jump To

Financial support was provided by Princeton University. We thank Long Wang for efforts to characterize complexes of 1.

References

ARTICLE SECTIONS
Jump To

This article references 39 other publications.

  1. 1

    Selected reviews and preeminent examples of phosphine effects in catalysis:

    (a) Xie, J.-H.; Zhu, S.-F.; Zhou, Q.-L. Chem. Rev. 2011, 111, 1713 DOI: 10.1021/cr100218m
    (b) Doucet, H.; Ohkuma, T.; Murata, K.; Yokozawa, T.; Kozawa, M.; Katayama, E.; England, A. F.; Ikariya, T.; Noyori, R. Angew. Chem., Int. Ed. 1998, 37, 1703 DOI: 10.1002/(SICI)1521-3773(19980703)37:12<1703::AID-ANIE1703>3.0.CO;2-I
    (c) Surry, D. S.; Buchwald, S. L. Chem. Sci. 2011, 2, 27 DOI: 10.1039/C0SC00331J
    (d) Barder, T. E.; Walker, S. D.; Martinelli, J. R.; Buchwald, S. L. J. Am. Chem. Soc. 2005, 127, 4685 DOI: 10.1021/ja042491j
    (e) Gorin, D. J.; Toste, F. D. Nature 2007, 446, 395 DOI: 10.1038/nature05592
    (f) Helmchen, G.; Pfaltz, A. Acc. Chem. Res. 2000, 33, 336 DOI: 10.1021/ar9900865
    (g) Sanford, M. S.; Love, J. A.; Grubbs, R. H. J. Am. Chem. Soc. 2001, 123, 6543 DOI: 10.1021/ja010624k
    (h) Dias, E. L.; Nguyen, S. T.; Grubbs, R. H. J. Am. Chem. Soc. 1997, 119, 3887 DOI: 10.1021/ja963136z
    (i) van der Boom, M. E.; Milstein, D. Chem. Rev. 2003, 103, 1759 DOI: 10.1021/cr960118r
  2. 2
    (a) Wei, Y.; Shi, M. Acc. Chem. Res. 2010, 43, 1005 DOI: 10.1021/ar900271g
    (b) Lu, X.; Zhang, C.; Xu, Z. Acc. Chem. Res. 2001, 34, 535 DOI: 10.1021/ar000253x
  3. 3
    Sletten, E. M.; Bertozzi, C. R. Acc. Chem. Res. 2011, 44, 666 DOI: 10.1021/ar200148z
  4. 4
    (a) Kim, S.; Lim, Y. T.; Soltesz, E. G.; De Grand, A. M.; Lee, J.; Nakayama, A.; Parker, J. A.; Mihaljevic, T.; Laurence, R. G.; Dor, D. M.; Cohn, L. H.; Bawendi, M. G.; Frangioni, J. V. Nat. Biotechnol. 2004, 22, 93 DOI: 10.1038/nbt920
    (b) Walter, M.; Akola, J.; Lopez-Acevedo, O.; Jadzinsky, P. D.; Calero, G.; Ackerson, C. J.; Whetten, R. L.; Grönbeck, H.; Häkkinen, H. Proc. Natl. Acad. Sci. U. S. A. 2008, 105, 9157 DOI: 10.1073/pnas.0801001105
  5. 5
    Myers, M.; Connor, E. F.; Glauser, T.; Möck, A.; Nyce, G.; Hedrick, J. L. J. Polym. Sci., Part A: Polym. Chem. 2002, 40, 844 DOI: 10.1002/pola.10168.abs
  6. 6
    Stephan, D. W.; Erker, G. Angew. Chem., Int. Ed. 2010, 49, 46 DOI: 10.1002/anie.200903708
  7. 7
    Petuškova, J.; Patil, M.; Holle, S.; Lehmann, C. W.; Thiel, W.; Alcarazo, M. J. Am. Chem. Soc. 2011, 133, 20758 DOI: 10.1021/ja210223s
  8. 8
    Dunn, N. L.; Ha, M.; Radosevich, A. T. J. Am. Chem. Soc. 2012, 134, 11330 DOI: 10.1021/ja302963p
  9. 9
    (a) Buß, F.; Mehlmann, P.; Mück-Lichtenfeld, C.; Bergander, K.; Dielmann, F. J. Am. Chem. Soc. 2016, 138, 1840 DOI: 10.1021/jacs.5b13116
    (b) Wünsche, M. A.; Mehlmann, P.; Witteler, T.; Buß, F.; Rathmann, P.; Dielmann, F. Angew. Chem., Int. Ed. 2015, 54, 11857 DOI: 10.1002/anie.201504993
  10. 10
    (a) Tolman, C. A. J. Am. Chem. Soc. 1970, 92, 2953 DOI: 10.1021/ja00713a006
    (b) Tolman, C. A. Chem. Rev. 1977, 77, 313 DOI: 10.1021/cr60307a002
    (c) Bartik, T.; Himmler, T.; Schulte, H. G.; Seevogel, K. J. Organomet. Chem. 1984, 272, 29 DOI: 10.1016/0022-328X(84)80440-4
  11. 11
    Wagner, J. P.; Schreiner, P. R. Angew. Chem., Int. Ed. 2015, 54, 12274 DOI: 10.1002/anie.201503476
  12. 12
    (a) Schmidbaur, H.; Brachthäuser, B.; Steigelmann, O.; Beruda, H. Chem. Ber. 1992, 125, 2705 DOI: 10.1002/cber.19921251214
    (b) Angermaier, K.; Zeller, E.; Schmidbaur, H. J. Organomet. Chem. 1994, 472, 371 DOI: 10.1016/0022-328X(94)80225-4
    (c) Tiekink, E. Acta Crystallogr., Sect. C: Cryst. Struct. Commun. 1989, 45, 1233 DOI: 10.1107/S0108270189001915
    (d) Muir, J. A.; Muir, M. M.; Pulgar, L. B.; Jones, P. G.; Sheldrick, G. M. Acta Crystallogr., Sect. C: Cryst. Struct. Commun. 1985, 41, 1174 DOI: 10.1107/S010827018500703X
    (e) Bowen, R. J.; Caddy, J.; Fernandes, M. A.; Layh, M.; Mamo, M. A. Polyhedron 2004, 23, 2273 DOI: 10.1016/j.poly.2004.07.008
  13. 13
    (a) Fleckenstein, C. A.; Plenio, H. Chem. Soc. Rev. 2010, 39, 694 DOI: 10.1039/B903646F
    (b) Agnew-Francis, K. A.; Williams, C. M. Adv. Synth. Catal. 2016, 358, 675 DOI: 10.1002/adsc.201500949
  14. 14
    (a) Rampf, F.; Militzer, H.-C. EP1354886 A1, October 22, 2003.
    (b) Maehara, S.; Iwazaki, H. Int. Pat. WO2003066643 A1, August 14, 2003.
  15. 15
    Hackett, M.; Whitesides, G. M. Organometallics 1987, 6, 403 DOI: 10.1021/om00145a027
  16. 16
    Prabagar, J.; Cowley, A. R.; Brown, J. M. Synlett 2011, 2011, 2351 DOI: 10.1055/s-0030-1260303
  17. 17
    (a) No, B. I.; Zotov, Y. L.; Karev, V. N. Zh. Obshch. Khim. 1990, 60, 1795
    (b) Goerlich, J. R.; Schmutzler, R. Phosphorus, Sulfur Silicon Relat. Elem. 1993, 81, 141 DOI: 10.1080/10426509308034383
    (c) Sasaki, T.; Nakanishi, A.; Ohno, M. J. Org. Chem. 1982, 47, 3219 DOI: 10.1021/jo00138a004
  18. 18

    The stability of pure 1 may be related to its crystallinity (mp 357 °C, dec), because a solution of 1 does oxidize when exposed to air.

  19. 19
    Charton, M. In Steric Effects in Drug Design; Springer: Berlin, 1983; Vol. 114, p 57 91.
  20. 20
    Giri, R.; Lam, J. K.; Yu, J.-Q. J. Am. Chem. Soc. 2010, 132, 686 DOI: 10.1021/ja9077705
  21. 21
    Poater, A.; Cosenza, B.; Correa, A.; Giudice, S.; Ragone, F.; Scarano, V.; Cavallo, L. Eur. J. Inorg. Chem. 2009, 2009, 1759 DOI: 10.1002/ejic.200801160
  22. 22
    (a) Müller, T.; Mingos, D. M. Transition Met. Chem. 1995, 20, 533 DOI: 10.1007/BF00136415
    (b) Clavier, H.; Nolan, S. P. Chem. Commun. 2010, 46, 841 DOI: 10.1039/b922984a
  23. 23
    Stambuli, J. P.; Incarvito, C. D.; Bühl, M.; Hartwig, J. F. J. Am. Chem. Soc. 2004, 126, 1184 DOI: 10.1021/ja037928m
  24. 24
    (a) Aranyos, A.; Old, D. W.; Kiyomori, A.; Wolfe, J. P.; Sadighi, J. P.; Buchwald, S. L. J. Am. Chem. Soc. 1999, 121, 4369 DOI: 10.1021/ja990324r
    (b) an der Heiden, M.; Plenio, H. Chem. Commun. 2007, 972 DOI: 10.1039/B616608C
    (c) Sergeev, A. G.; Spannenberg, A.; Beller, M. J. Am. Chem. Soc. 2008, 130, 15549 DOI: 10.1021/ja804997z
    (d) Gowrisankar, S.; Sergeev, A. G.; Anbarasan, P.; Spannenberg, A.; Neumann, H.; Beller, M. J. Am. Chem. Soc. 2010, 132, 11592 DOI: 10.1021/ja103248d
    (e) Su, M.; Buchwald, S. L. Angew. Chem., Int. Ed. 2012, 51, 4710 DOI: 10.1002/anie.201201244
  25. 25
    (a) Kühl, O. Coord. Chem. Rev. 2005, 249, 693 DOI: 10.1016/j.ccr.2004.08.021
    (b) Rahman, M. M.; Liu, H. Y.; Eriks, K.; Prock, A.; Giering, W. P. Organometallics 1989, 8, 1 DOI: 10.1021/om00103a001
  26. 26
    Serron, S.; Huang, J.; Nolan, S. P. Organometallics 1998, 17, 534 DOI: 10.1021/om970766g
  27. 27
    Nelson, D. J.; Nolan, S. P. Chem. Soc. Rev. 2013, 42, 6723 DOI: 10.1039/c3cs60146c
  28. 28
    (a) Spokoyny, A. M.; Lewis, C. D.; Teverovskiy, G.; Buchwald, S. L. Organometallics 2012, 31, 8478 DOI: 10.1021/om301116x
    (b) Mohr, B.; Lynn, D. M.; Grubbs, R. H. Organometallics 1996, 15, 4317 DOI: 10.1021/om9603373
  29. 29
    (a) Allman, T.; Goel, R. G. Can. J. Chem. 1982, 60, 716 DOI: 10.1139/v82-106
    (b) Abdur-Rashid, K.; Fong, T. P.; Greaves, B.; Gusev, D. G.; Hinman, J. G.; Landau, S. E.; Lough, A. J.; Morris, R. H. J. Am. Chem. Soc. 2000, 122, 9155 DOI: 10.1021/ja994428d
  30. 30
    Pinnell, R. P.; Megerle, C. A.; Manatt, S. L.; Kroon, P. A. J. Am. Chem. Soc. 1973, 95, 977 DOI: 10.1021/ja00784a087
  31. 31
    Laube, T. Angew. Chem., Int. Ed. Engl. 1986, 25, 349 DOI: 10.1002/anie.198603491
  32. 32
    Lyngvi, E.; Sanhueza, I. A.; Schoenebeck, F. Organometallics 2015, 34, 805 DOI: 10.1021/om501199t
  33. 33
    (a) Hehre, W. J.; Pau, C. F.; Headley, A. D.; Taft, R. W.; Topsom, R. D. J. Am. Chem. Soc. 1986, 108, 1711 DOI: 10.1021/ja00267a063
    (b) Hansch, C.; Leo, A.; Taft, R. W. Chem. Rev. 1991, 91, 165 DOI: 10.1021/cr00002a004
  34. 34
    Ngola, S. M.; Dougherty, D. A. J. Org. Chem. 1996, 61, 4355 DOI: 10.1021/jo960521y
  35. 35
    (a) Fu, G. C. Acc. Chem. Res. 2008, 41, 1555 DOI: 10.1021/ar800148f
    (b) Zapf, A.; Ehrentraut, A.; Beller, M. Angew. Chem., Int. Ed. 2000, 39, 4153 DOI: 10.1002/1521-3773(20001117)39:22<4153::AID-ANIE4153>3.0.CO;2-T
  36. 36

    See SI for a comparison of PAd3 and XPhos under conditions optimized for the later.

  37. 37
    (a) Torborg, C.; Beller, M. Adv. Synth. Catal. 2009, 351, 3027 DOI: 10.1002/adsc.200900587
    (b) de Vries, J. G. Top. Organomet. Chem. 2012, 42, 1 DOI: 10.1007/3418_2012_32
  38. 38
    (a) Bedford, R. B.; Cazin, C. S. J.; Hazelwood, S. L. Angew. Chem., Int. Ed. 2002, 41, 4120 DOI: 10.1002/1521-3773(20021104)41:21<4120::AID-ANIE4120>3.0.CO;2-7
    (b) Handa, S.; Andersson, M. P.; Gallou, F.; Reilly, J.; Lipshutz, B. H. Angew. Chem., Int. Ed. 2016, 55, 4914 DOI: 10.1002/anie.201510570
  39. 39
    Kinzel, T.; Zhang, Y.; Buchwald, S. L. J. Am. Chem. Soc. 2010, 132, 14073 DOI: 10.1021/ja1073799

Cited By


This article is cited by 91 publications.

  1. Jingjun Huang, Matthew Isaac, Ryan Watt, Joseph Becica, Emma Dennis, Makhsud I. Saidaminov, William A. Sabbers, David C. Leitch. DMPDAB–Pd–MAH: A Versatile Pd(0) Source for Precatalyst Formation, Reaction Screening, and Preparative-Scale Synthesis. ACS Catalysis 2021, 11 (9) , 5636-5646. https://doi.org/10.1021/acscatal.1c00288OpenURL UNIV OF HOUSTON MAIN
  2. Julia M. Stauber, Arnold L. Rheingold, Alexander M. Spokoyny. Gold(III) Aryl Complexes as Reagents for Constructing Hybrid Peptide-Based Assemblies via Cysteine S-Arylation. Inorganic Chemistry 2021, 60 (7) , 5054-5062. https://doi.org/10.1021/acs.inorgchem.1c00087OpenURL UNIV OF HOUSTON MAIN
  3. Benjamin Murray, Shibin Zhao, James M. Aramini, Hsin Wang, Mark R. Biscoe. The Stereochemical Course of Pd-Catalyzed Suzuki Reactions Using Primary Alkyltrifluoroborate Nucleophiles. ACS Catalysis 2021, 11 (5) , 2504-2510. https://doi.org/10.1021/acscatal.0c04325OpenURL UNIV OF HOUSTON MAIN
  4. Alison M. Wilders, Jeremy Henle, Michael C. Haibach, Rafal Swiatowiec, Jeffrey Bien, Rodger F. Henry, Shardrack O. Asare, Amanda L. Wall, Shashank Shekhar. Pd-Catalyzed Cross-Coupling of Hindered, Electron-Deficient Anilines with Bulky (Hetero)aryl Halides Using Biaryl Phosphorinane Ligands. ACS Catalysis 2020, 10 (24) , 15008-15018. https://doi.org/10.1021/acscatal.0c04280OpenURL UNIV OF HOUSTON MAIN
  5. Shu-kai Liu, Wen-Ching Chen, Glenn P. A. Yap, Tiow-Gan Ong. Synthesis of Carbophosphinocarbene and Their Donating Ability: Expansion of the Carbone Class. Organometallics 2020, 39 (23) , 4395-4401. https://doi.org/10.1021/acs.organomet.0c00618OpenURL UNIV OF HOUSTON MAIN
  6. Fumiya Hirakawa, Hiroshi Nakagawa, Shunya Honda, Shintaro Ishida, Takeaki Iwamoto. Trialkylphosphines Having a Bulky Phosphacyclopentane Backbone: Structural and Redox Properties Depending on the Exocyclic Alkyl Groups and EPR Observation of a Persistent Trialkylphosphine Radical Cation. The Journal of Organic Chemistry 2020, 85 (22) , 14634-14642. https://doi.org/10.1021/acs.joc.0c01393OpenURL UNIV OF HOUSTON MAIN
  7. Shin Ando, Mio Otsuka, Tadao Ishizuka. Analyses of the Structural and Electronic Properties of NHCs with Bicyclic Architectures. Organometallics 2020, 39 (21) , 3839-3848. https://doi.org/10.1021/acs.organomet.0c00564OpenURL UNIV OF HOUSTON MAIN
  8. Koji Kubota, Rikuro Takahashi, Minami Uesugi, Hajime Ito. A Glove-Box- and Schlenk-Line-Free Protocol for Solid-State C–N Cross-Coupling Reactions Using Mechanochemistry. ACS Sustainable Chemistry & Engineering 2020, 8 (44) , 16577-16582. https://doi.org/10.1021/acssuschemeng.0c05834OpenURL UNIV OF HOUSTON MAIN
  9. Anna Wrona-Piotrowicz, Anna Makal, Janusz Zakrzewski. Triflic Acid-Promoted Adamantylation and tert-Butylation of Pyrene: Fluorescent Properties of Pyrene-Decorated Adamantanes and a Channeled Crystal Structure of 1,3,5-Tris(pyren-2-yl)adamantane. The Journal of Organic Chemistry 2020, 85 (17) , 11134-11139. https://doi.org/10.1021/acs.joc.0c01060OpenURL UNIV OF HOUSTON MAIN
  10. Antony Obanda, Kendra Valerius, Joel T. Mague, Stephen Sproules, James P. Donahue. Group 10 Metal Dithiolene Bis(isonitrile) Complexes: Synthesis, Structures, Properties, and Reactivity. Organometallics 2020, 39 (15) , 2854-2870. https://doi.org/10.1021/acs.organomet.0c00375OpenURL UNIV OF HOUSTON MAIN
  11. Thomas Barber, Stephen P. Argent, Liam T. Ball. Expanding Ligand Space: Preparation, Characterization, and Synthetic Applications of Air-Stable, Odorless Di-tert-alkylphosphine Surrogates. ACS Catalysis 2020, 10 (10) , 5454-5461. https://doi.org/10.1021/acscatal.0c01414OpenURL UNIV OF HOUSTON MAIN
  12. Peter Viereck, Simon Krautwald, Tyler P. Pabst, Paul J. Chirik. A Boron Activating Effect Enables Cobalt-Catalyzed Asymmetric Hydrogenation of Sterically Hindered Alkenes. Journal of the American Chemical Society 2020, 142 (8) , 3923-3930. https://doi.org/10.1021/jacs.9b12214OpenURL UNIV OF HOUSTON MAIN
  13. Yumeela Ganga-Sah, Daniel B. Leznoff, Andrew J. Bennet. Synthesis of Sterically Congested 2,2′-Bi(Adamantyl)-Based Alcohol and Amines. The Journal of Organic Chemistry 2019, 84 (23) , 15276-15282. https://doi.org/10.1021/acs.joc.9b02293OpenURL UNIV OF HOUSTON MAIN
  14. Yi-Chi Yang, Yi-Ching Lin, Yen-Ku Wu. Palladium-Catalyzed Cascade Arylation of Vinylogous Esters Enabled by Tris(1-adamantyl)phosphine. Organic Letters 2019, 21 (23) , 9286-9290. https://doi.org/10.1021/acs.orglett.9b03071OpenURL UNIV OF HOUSTON MAIN
  15. Yuuki Sawatsugawa, Ken Tamura, Natsuhiro Sano, Tsuneo Imamoto. A Bulky Three-Hindered Quadrant Bisphosphine Ligand: Synthesis and Application in Rhodium-Catalyzed Asymmetric Hydrogenation of Functionalized Alkenes. Organic Letters 2019, 21 (22) , 8874-8878. https://doi.org/10.1021/acs.orglett.9b02702OpenURL UNIV OF HOUSTON MAIN
  16. Chunming Zhang, Kelli Ogawa, Siyu Tu, Chengli Zu, Jim Ringer, Chris Derstine, Hien Do, Philip P. Fontaine, Jerzy Klosin. Highly Active Monoligated Arylpalladacyles for Cross-Coupling Reactions. Organic Process Research & Development 2019, 23 (10) , 2181-2190. https://doi.org/10.1021/acs.oprd.9b00234OpenURL UNIV OF HOUSTON MAIN
  17. Thorsten Scherpf, Ilja Rodstein, Maurice Paaßen, Viktoria H. Gessner. Group 9 and 10 Metal Complexes of an Ylide-Substituted Phosphine: Coordination versus Cyclometalation and Oxidative Addition. Inorganic Chemistry 2019, 58 (12) , 8151-8161. https://doi.org/10.1021/acs.inorgchem.9b00948OpenURL UNIV OF HOUSTON MAIN
  18. Lei Wang, Yi-Ming Wei, Yan Zhao, Xin-Fang Duan. Unified Protocol for Fe-Based Catalyzed Biaryl Cross-Couplings between Various Aryl Electrophiles and Aryl Grignard Reagents. The Journal of Organic Chemistry 2019, 84 (9) , 5176-5186. https://doi.org/10.1021/acs.joc.9b00151OpenURL UNIV OF HOUSTON MAIN
  19. Louis-Charles Campeau, Nilay Hazari. Cross-Coupling and Related Reactions: Connecting Past Success to the Development of New Reactions for the Future. Organometallics 2019, 38 (1) , 3-35. https://doi.org/10.1021/acs.organomet.8b00720OpenURL UNIV OF HOUSTON MAIN
  20. Shin Ando, Ryota Miyata, Hirofumi Matsunaga, Tadao Ishizuka. Influences of Phenyl Rings on NHC Ligands with Bicyclic Architectures. The Journal of Organic Chemistry 2019, 84 (1) , 128-139. https://doi.org/10.1021/acs.joc.8b02480OpenURL UNIV OF HOUSTON MAIN
  21. Yiming Zhao, Huy van Nguyen, Louise Male, Philip Craven, Benjamin R. Buckley, John S. Fossey. Phosphino-Triazole Ligands for Palladium-Catalyzed Cross-Coupling. Organometallics 2018, 37 (22) , 4224-4241. https://doi.org/10.1021/acs.organomet.8b00539OpenURL UNIV OF HOUSTON MAIN
  22. Amanda K. Leone, Emily A. Mueller, Anne J. McNeil. The History of Palladium-Catalyzed Cross-Couplings Should Inspire the Future of Catalyst-Transfer Polymerization. Journal of the American Chemical Society 2018, 140 (45) , 15126-15139. https://doi.org/10.1021/jacs.8b09103OpenURL UNIV OF HOUSTON MAIN
  23. Klaus Banert, Manuel Heck, Andreas Ihle, Julia Kronawitt, Tom Pester, Tharallah Shoker. Steric Hindrance Underestimated: It is a Long, Long Way to Tri-tert-alkylamines. The Journal of Organic Chemistry 2018, 83 (9) , 5138-5148. https://doi.org/10.1021/acs.joc.8b00496OpenURL UNIV OF HOUSTON MAIN
  24. Liye Chen, Haydn Francis, Brad P. Carrow. An “On-Cycle” Precatalyst Enables Room-Temperature Polyfluoroarylation Using Sensitive Boronic Acids. ACS Catalysis 2018, 8 (4) , 2989-2994. https://doi.org/10.1021/acscatal.8b00341OpenURL UNIV OF HOUSTON MAIN
  25. Jie Dong, Hui Guo, and Qiao-Sheng Hu . Controlled Pd(0)/Ad3P-Catalyzed Suzuki Cross-Coupling Polymerization of AB-Type Monomers with Ad3P-Coordinated Acetanilide-Based Palladacycle Complex as Initiator. ACS Macro Letters 2017, 6 (11) , 1301-1304. https://doi.org/10.1021/acsmacrolett.7b00759OpenURL UNIV OF HOUSTON MAIN
  26. Dong-Dong Lu, Xu-Xian He, and Feng-Shou Liu . Bulky Yet Flexible Pd-PEPPSI-IPentAn for the Synthesis of Sterically Hindered Biaryls in Air. The Journal of Organic Chemistry 2017, 82 (20) , 10898-10911. https://doi.org/10.1021/acs.joc.7b01711OpenURL UNIV OF HOUSTON MAIN
  27. Liye Chen, Daniel R. Sanchez, Bufan Zhang, and Brad P. Carrow . “Cationic” Suzuki–Miyaura Coupling with Acutely Base-Sensitive Boronic Acids. Journal of the American Chemical Society 2017, 139 (36) , 12418-12421. https://doi.org/10.1021/jacs.7b07687OpenURL UNIV OF HOUSTON MAIN
  28. David A. Petrone, Ivan Franzoni, Juntao Ye, José F. Rodríguez, Amalia I. Poblador-Bahamonde, and Mark Lautens . Palladium-Catalyzed Hydrohalogenation of 1,6-Enynes: Hydrogen Halide Salts and Alkyl Halides as Convenient HX Surrogates. Journal of the American Chemical Society 2017, 139 (9) , 3546-3557. https://doi.org/10.1021/jacs.7b00482OpenURL UNIV OF HOUSTON MAIN
  29. James D. Nobbs, Choon Heng Low, Ludger P. Stubbs, Cun Wang, Eite Drent, and Martin van Meurs . Isomerizing Methoxycarbonylation of Alkenes to Esters Using a Bis(phosphorinone)xylene Palladium Catalyst. Organometallics 2017, 36 (2) , 391-398. https://doi.org/10.1021/acs.organomet.6b00813OpenURL UNIV OF HOUSTON MAIN
  30. Xiao-Bing Lan, Fu-Min Chen, Bei-Bei Ma, Dong-Sheng Shen, and Feng-Shou Liu . Pd-PEPPSI Complexes Bearing Bulky [(1,2-Di-(tert-butyl)acenaphthyl] (DtBu-An) on N-Heterocarbene Backbones: Highly Efficient for Suzuki–Miyaura Cross-Coupling under Aerobic Conditions. Organometallics 2016, 35 (22) , 3852-3860. https://doi.org/10.1021/acs.organomet.6b00723OpenURL UNIV OF HOUSTON MAIN
  31. Allen L. Chan, Jess Estrada, Christos E. Kefalidis, and Vincent Lavallo . Changing the Charge: Electrostatic Effects in Pd-Catalyzed Cross-Coupling. Organometallics 2016, 35 (19) , 3257-3260. https://doi.org/10.1021/acs.organomet.6b00622OpenURL UNIV OF HOUSTON MAIN
  32. Oana Moncea, Maria A. Gunawan, Didier Poinsot, Hélène Cattey, Jonathan Becker, Raisa I. Yurchenko, Ekaterina D. Butova, Heike Hausmann, Marina Šekutor, Andrey A. Fokin, Jean-Cyrille Hierso, and Peter R. Schreiner . Defying Stereotypes with Nanodiamonds: Stable Primary Diamondoid Phosphines. The Journal of Organic Chemistry 2016, 81 (19) , 8759-8769. https://doi.org/10.1021/acs.joc.6b01219OpenURL UNIV OF HOUSTON MAIN
  33. Sean McCarthy, D. Christopher Braddock, James D.E.T. Wilton-Ely. Strategies for sustainable palladium catalysis. Coordination Chemistry Reviews 2021, 442 , 213925. https://doi.org/10.1016/j.ccr.2021.213925OpenURL UNIV OF HOUSTON MAIN
  34. Heidar Darmandeh, Julian Löffler, Nikolaos V. Tzouras, Busra Dereli, Thorsten Scherpf, Kai‐Stephan Feichtner, Sofie Vanden Broeck, Kristof Van Hecke, Marina Saab, Catherine S. J. Cazin, Luigi Cavallo, Steven P. Nolan, Viktoria H. Gessner. Au⋅⋅⋅H−C Hydrogen Bonds as Design Principle in Gold(I) Catalysis. Angewandte Chemie 2021, https://doi.org/10.1002/ange.202108581OpenURL UNIV OF HOUSTON MAIN
  35. Heidar Darmandeh, Julian Löffler, Nikolaos V. Tzouras, Busra Dereli, Thorsten Scherpf, Kai‐Stephan Feichtner, Sofie Vanden Broeck, Kristof Van Hecke, Marina Saab, Catherine S. J. Cazin, Luigi Cavallo, Steven P. Nolan, Viktoria H. Gessner. Au⋅⋅⋅H−C Hydrogen Bonds as Design Principle in Gold(I) Catalysis. Angewandte Chemie International Edition 2021, https://doi.org/10.1002/anie.202108581OpenURL UNIV OF HOUSTON MAIN
  36. Robin F. Weitkamp, Beate Neumann, Hans‐Georg Stammler, Berthold Hoge. Phosphorus‐Containing Superbases: Recent Progress in the Chemistry of Electron‐Abundant Phosphines and Phosphazenes. Chemistry – A European Journal 2021, 27 (42) , 10807-10825. https://doi.org/10.1002/chem.202101065OpenURL UNIV OF HOUSTON MAIN
  37. Asanda C. Matsheku, Richard Tia, Munaka C. Maumela, Banothile C. E. Makhubela. Ferrocenylimine Palladium (II) Complexes: Synthesis, Characterization and Application in Mizoroki-Heck and Suzuki-Miyaura Cross-Coupling Reactions. Catalysts 2021, 11 (7) , 755. https://doi.org/10.3390/catal11070755OpenURL UNIV OF HOUSTON MAIN
  38. Koji Kubota, Hajime Ito. Development of Selective Reactions Using Ball Milling. Journal of Synthetic Organic Chemistry, Japan 2021, 79 (5) , 492-502. https://doi.org/10.5059/yukigoseikyokaishi.79.492OpenURL UNIV OF HOUSTON MAIN
  39. Jens Handelmann, Chatla Naga Babu, Henning Steinert, Christopher Schwarz, Thorsten Scherpf, Alexander Kroll, Viktoria H. Gessner. Towards the rational design of ylide-substituted phosphines for gold( i )-catalysis: from inactive to ppm-level catalysis. Chemical Science 2021, 12 (12) , 4329-4337. https://doi.org/10.1039/D1SC00105AOpenURL UNIV OF HOUSTON MAIN
  40. Michael V. Bautista, Anthony J. Varni, Josué Ayuso-Carrillo, Matthew C. Carson, Kevin J. T. Noonan. Pairing Suzuki–Miyaura cross-coupling and catalyst transfer polymerization. Polymer Chemistry 2021, 12 (10) , 1404-1414. https://doi.org/10.1039/D0PY01507EOpenURL UNIV OF HOUSTON MAIN
  41. Uwaila Omoruyi, Samuel J. Page, Samantha L. Apps, Andrew J.P. White, Nicholas J. Long, Philip W. Miller. Synthesis and characterisation of a range of Fe, Co, Ru and Rh triphos complexes and investigations into the catalytic hydrogenation of levulinic acid. Journal of Organometallic Chemistry 2021, 935 , 121650. https://doi.org/10.1016/j.jorganchem.2020.121650OpenURL UNIV OF HOUSTON MAIN
  42. Nicholas A. Richard, Chun Keat Khor, Sydney M. Hetherington, Scott L. Mills, Andreas Decken, C. Adam Dyker. Iminophosphorano‐Substituted Bispyridinylidenes: Redox Potentials and Substituent Constants from Tolman Electronic Parameters. Chemistry – A European Journal 2020, 26 (72) , 17371-17375. https://doi.org/10.1002/chem.202004153OpenURL UNIV OF HOUSTON MAIN
  43. Awal Noor, Sadaf Qayyum, Sher Ali Khan. Synthesis and Structure of 1,2-Bis(2,6-dimethylphenylphosphino)ethane: A Missing Member of the Phosphine Family. Journal of Chemical Crystallography 2020, 50 (4) , 438-442. https://doi.org/10.1007/s10870-019-00801-9OpenURL UNIV OF HOUSTON MAIN
  44. Matthew R. Espinosa, Angelino Doppiu, Nilay Hazari. Differences in the Performance of Allyl Based Palladium Precatalysts for Suzuki‐Miyaura Reactions. Advanced Synthesis & Catalysis 2020, 362 (22) , 5062-5078. https://doi.org/10.1002/adsc.202000987OpenURL UNIV OF HOUSTON MAIN
  45. Xinlan A. F. Cook, Antoine Gombert, Janette McKnight, Loïc R. E. Pantaine, Michael C. Willis. The 2‐Pyridyl Problem: Challenging Nucleophiles in Cross‐Coupling Arylations. Angewandte Chemie 2020, 8 https://doi.org/10.1002/ange.202010631OpenURL UNIV OF HOUSTON MAIN
  46. Xinlan A. F. Cook, Antoine Gombert, Janette McKnight, Loïc R. E. Pantaine, Michael C. Willis. The 2‐Pyridyl Problem: Challenging Nucleophiles in Cross‐Coupling Arylations. Angewandte Chemie International Edition 2020, 8 https://doi.org/10.1002/anie.202010631OpenURL UNIV OF HOUSTON MAIN
  47. Thorsten Scherpf, Henning Steinert, Angela Großjohann, Katharina Dilchert, Jens Tappen, Ilja Rodstein, Viktoria H. Gessner. Efficient Pd‐Catalyzed Direct Coupling of Aryl Chlorides with Alkyllithium Reagents. Angewandte Chemie 2020, 132 (46) , 20777-20784. https://doi.org/10.1002/ange.202008866OpenURL UNIV OF HOUSTON MAIN
  48. Thorsten Scherpf, Henning Steinert, Angela Großjohann, Katharina Dilchert, Jens Tappen, Ilja Rodstein, Viktoria H. Gessner. Efficient Pd‐Catalyzed Direct Coupling of Aryl Chlorides with Alkyllithium Reagents. Angewandte Chemie International Edition 2020, 59 (46) , 20596-20603. https://doi.org/10.1002/anie.202008866OpenURL UNIV OF HOUSTON MAIN
  49. Xinghua Ma, Benjamin Murray, Mark R. Biscoe. Stereoselectivity in Pd-catalysed cross-coupling reactions of enantioenriched nucleophiles. Nature Reviews Chemistry 2020, 4 (11) , 584-599. https://doi.org/10.1038/s41570-020-00222-9OpenURL UNIV OF HOUSTON MAIN
  50. Vladislav A. Voloshkin, Marina Saab, Kristof Van Hecke, Sii Hong Lau, Bradley P. Carrow, Steven P. Nolan. Synthesis, reactivity and catalytic activity of Au-PAd 3 complexes. Dalton Transactions 2020, 49 (39) , 13872-13879. https://doi.org/10.1039/D0DT03330HOpenURL UNIV OF HOUSTON MAIN
  51. Janina A. Werra, Marius A. Wünsche, Patrick Rathmann, Paul Mehlmann, Pawel Löwe, Fabian Dielmann. Effective Control of the Electron‐donating Ability of Phosphines by using Phosphazenyl and Phosphoniumylidyl Substituents. Zeitschrift für anorganische und allgemeine Chemie 2020, 646 (13) , 794-799. https://doi.org/10.1002/zaac.202000028OpenURL UNIV OF HOUSTON MAIN
  52. Kevin H. Shaughnessy. Monodentate Trialkylphosphines: Privileged Ligands in Metal-catalyzed Crosscoupling Reactions. Current Organic Chemistry 2020, 24 (3) , 231-264. https://doi.org/10.2174/1385272824666200211114540OpenURL UNIV OF HOUSTON MAIN
  53. Yu-Hsuan Chang, Wan-Ling Peng, I-Chia Chen, Hsin-Yun Hsu, Yen-Ku Wu. Palladium-catalyzed α-arylation of indolin-3-ones. Chemical Communications 2020, 56 (34) , 4660-4663. https://doi.org/10.1039/D0CC00435AOpenURL UNIV OF HOUSTON MAIN
  54. Luis Daniel Sifuentes-Vázquez, Eduardo Martínez-González, Rubén A. Toscano, Rubén Gaviño, Jorge Cárdenas, Carlos Antonio Rius-Alonso, Carlos Amador-Bedolla, Gustavo Alberto García de la Mora, Victor Manuel Ugalde-Saldivar. Experimental and Theoretical Exploration of Aryl Substituent Effects on the Electronic Properties of Asymmetric 4,7-Di(thiophene-2-yl)-benzo[c][2,1,5]thiadiazole Compounds. Polycyclic Aromatic Compounds 2020, , 1-16. https://doi.org/10.1080/10406638.2020.1749858OpenURL UNIV OF HOUSTON MAIN
  55. Jens Tappen, Ilja Rodstein, Katie McGuire, Angela Großjohann, Julian Löffler, Thorsten Scherpf, Viktoria H. Gessner. Palladium Complexes Based on Ylide‐Functionalized Phosphines (YPhos): Broadly Applicable High‐Performance Precatalysts for the Amination of Aryl Halides at Room Temperature. Chemistry – A European Journal 2020, 26 (19) , 4281-4288. https://doi.org/10.1002/chem.201905535OpenURL UNIV OF HOUSTON MAIN
  56. Ádám Sinai, Dániel Cs. Simkó, Fruzsina Szabó, Attila Paczal, Tamás Gáti, Attila Bényei, Zoltán Novák, András Kotschy. Aryl-Diadamantyl Phosphine Ligands in Palladium-Catalyzed Cross-Coupling Reactions: Synthesis, Structural Analysis, and Application. European Journal of Organic Chemistry 2020, 2020 (9) , 1122-1128. https://doi.org/10.1002/ejoc.201901834OpenURL UNIV OF HOUSTON MAIN
  57. Erfei Wang, Jiawei Zhang, Zhuoran Zhong, Kaixuan Chen, Mao Chen. Shuttling Catalyst: Facilitating C−C Bond Formation via Cross‐Couplings with a Thermoresponsive Polymeric Ligand. Israel Journal of Chemistry 2020, 60 (3-4) , 419-423. https://doi.org/10.1002/ijch.201900143OpenURL UNIV OF HOUSTON MAIN
  58. Lukas F.B. Wilm, Paul Mehlmann, Florenz Buß, Fabian Dielmann. Synthesis and characterization of strongly electron-donating bidentate phosphines containing imidazolin-2-ylidenamino substituents and their electron-rich nickel(0), palladium(II) and gold(I) chelate complexes. Journal of Organometallic Chemistry 2020, 909 , 121097. https://doi.org/10.1016/j.jorganchem.2019.121097OpenURL UNIV OF HOUSTON MAIN
  59. Kevin H. Shaughnessy. Development of Palladium Precatalysts that Efficiently Generate LPd(0) Active Species. Israel Journal of Chemistry 2020, 60 (3-4) , 180-194. https://doi.org/10.1002/ijch.201900067OpenURL UNIV OF HOUSTON MAIN
  60. Yu Tang, Biao Yu. Coinage Metal (Bisfluorosulfonyl)imide Complexes: Preparation, Characterization, and Catalytic Applications. European Journal of Inorganic Chemistry 2020, 2020 (1) , 107-118. https://doi.org/10.1002/ejic.201901058OpenURL UNIV OF HOUSTON MAIN
  61. Philipp Rotering, Lukas F. B. Wilm, Janina A. Werra, Fabian Dielmann. Pyridinylidenaminophosphines: Facile Access to Highly Electron‐Rich Phosphines. Chemistry – A European Journal 2020, 26 (2) , 406-411. https://doi.org/10.1002/chem.201904621OpenURL UNIV OF HOUSTON MAIN
  62. Seewon Joung, Allison M. Bergmann, M. Kevin Brown. Ni-catalyzed 1,2-benzylboration of 1,2-disubstituted unactivated alkenes. Chemical Science 2019, 10 (47) , 10944-10947. https://doi.org/10.1039/C9SC04199KOpenURL UNIV OF HOUSTON MAIN
  63. Andrew L. Kocen, Maurice Brookhart, Olafs Daugulis. A highly active Ni(II)-triadamantylphosphine catalyst for ultrahigh-molecular-weight polyethylene synthesis. Nature Communications 2019, 10 (1) https://doi.org/10.1038/s41467-019-08309-8OpenURL UNIV OF HOUSTON MAIN
  64. Christopher Schwarz, Jens Handelmann, Daniel M. Baier, Alina Ouissa, Viktoria H. Gessner. Mono- and diylide-substituted phosphines (YPhos): impact of the ligand properties on the catalytic activity in gold( i )-catalysed hydroaminations. Catalysis Science & Technology 2019, 9 (23) , 6808-6815. https://doi.org/10.1039/C9CY01861AOpenURL UNIV OF HOUSTON MAIN
  65. Erfei Wang, Mao Chen. Catalyst shuttling enabled by a thermoresponsive polymeric ligand: facilitating efficient cross-couplings with continuously recyclable ppm levels of palladium. Chemical Science 2019, 10 (36) , 8331-8337. https://doi.org/10.1039/C9SC02171JOpenURL UNIV OF HOUSTON MAIN
  66. Yiming Zhao, Matthew G. Wakeling, Fernanda Meloni, Tze Jing Sum, Huy van Nguyen, Benjamin R. Buckley, Paul W. Davies, John S. Fossey. Balancing Bulkiness in Gold(I) Phosphino-triazole Catalysis. European Journal of Organic Chemistry 2019, 2019 (31-32) , 5540-5548. https://doi.org/10.1002/ejoc.201900850OpenURL UNIV OF HOUSTON MAIN
  67. Mario Marín, Juan J. Moreno, María M. Alcaide, Eleuterio Álvarez, Joaquín López-Serrano, Jesús Campos, M. Carmen Nicasio, Ernesto Carmona. Evaluating stereoelectronic properties of bulky dialkylterphenyl phosphine ligands. Journal of Organometallic Chemistry 2019, 896 , 120-128. https://doi.org/10.1016/j.jorganchem.2019.06.003OpenURL UNIV OF HOUSTON MAIN
  68. Eva Deck, Hanna E. Wagner, Jan Paradies, Frank Breher. Redox-responsive phosphonite gold complexes in hydroamination catalysis. Chemical Communications 2019, 55 (37) , 5323-5326. https://doi.org/10.1039/C9CC01492FOpenURL UNIV OF HOUSTON MAIN
  69. Shaochen Zhang, Juan del Pozo, Filippo Romiti, Yucheng Mu, Sebastian Torker, Amir H. Hoveyda. Delayed catalyst function enables direct enantioselective conversion of nitriles to NH 2 -amines. Science 2019, 364 (6435) , 45-51. https://doi.org/10.1126/science.aaw4029OpenURL UNIV OF HOUSTON MAIN
  70. Irina P. Beletskaya, Francisco Alonso, Vladimir Tyurin. The Suzuki-Miyaura reaction after the Nobel prize. Coordination Chemistry Reviews 2019, 385 , 137-173. https://doi.org/10.1016/j.ccr.2019.01.012OpenURL UNIV OF HOUSTON MAIN
  71. Fioralba Taullaj, David Armstrong, Shaishav Datta, Alan J. Lough, Ulrich Fekl. 2-Adamantyl Complexes of Platinum. European Journal of Inorganic Chemistry 2019, 2019 (9) , 1288-1291. https://doi.org/10.1002/ejic.201900019OpenURL UNIV OF HOUSTON MAIN
  72. Philip Weber, Thorsten Scherpf, Ilja Rodstein, Dominik Lichte, Lennart T. Scharf, Lukas J. Gooßen, Viktoria H. Gessner. Ein hochaktives, Ylid‐funktionalisiertes Phosphan für die palladiumkatalysierte Aminierung von Arylchloriden. Angewandte Chemie 2019, 131 (10) , 3235-3239. https://doi.org/10.1002/ange.201810696OpenURL UNIV OF HOUSTON MAIN
  73. Philip Weber, Thorsten Scherpf, Ilja Rodstein, Dominik Lichte, Lennart T. Scharf, Lukas J. Gooßen, Viktoria H. Gessner. A Highly Active Ylide‐Functionalized Phosphine for Palladium‐Catalyzed Aminations of Aryl Chlorides. Angewandte Chemie International Edition 2019, 58 (10) , 3203-3207. https://doi.org/10.1002/anie.201810696OpenURL UNIV OF HOUSTON MAIN
  74. Jie Dong, Hui Guo, Wei Peng, Qiao-Sheng Hu. Room temperature Pd(0)/Ad3P-catalyzed coupling reactions of aryl chlorides with bis(pinacolato)diboron. Tetrahedron Letters 2019, 60 (11) , 760-763. https://doi.org/10.1016/j.tetlet.2019.01.042OpenURL UNIV OF HOUSTON MAIN
  75. Junya Arashima, Tomohiro Iwai, Masaya Sawamura. A Polystyrene‐Cross‐Linking Tricyclohexylphosphine: Synthesis, Characterization and Applications to Pd‐Catalyzed Cross‐Coupling Reactions of Aryl Chlorides. Chemistry – An Asian Journal 2019, 14 (3) , 411-415. https://doi.org/10.1002/asia.201801651OpenURL UNIV OF HOUSTON MAIN
  76. Mario Marín, Juan J. Moreno, Carlos Navarro‐Gilabert, Eleuterio Álvarez, Celia Maya, Riccardo Peloso, M. Carmen Nicasio, Ernesto Carmona. Synthesis, Structure and Nickel Carbonyl Complexes of Dialkylterphenyl Phosphines. Chemistry – A European Journal 2019, 25 (1) , 260-272. https://doi.org/10.1002/chem.201803598OpenURL UNIV OF HOUSTON MAIN
  77. Shibin Zhao, Tobias Gensch, Benjamin Murray, Zachary L. Niemeyer, Matthew S. Sigman, Mark R. Biscoe. Enantiodivergent Pd-catalyzed C–C bond formation enabled through ligand parameterization. Science 2018, 362 (6415) , 670-674. https://doi.org/10.1126/science.aat2299OpenURL UNIV OF HOUSTON MAIN
  78. . Catalytic Process Design: The Industrial Perspective. 2018,,, 31-73. https://doi.org/10.1002/9783527807253.ch2OpenURL UNIV OF HOUSTON MAIN
  79. Thorsten Scherpf, Christopher Schwarz, Lennart T. Scharf, Jana-Alina Zur, Andreas Helbig, Viktoria H. Gessner. Ylide-Functionalized Phosphines: Strong Donor Ligands for Homogeneous Catalysis. Angewandte Chemie 2018, 130 (39) , 13041-13046. https://doi.org/10.1002/ange.201805372OpenURL UNIV OF HOUSTON MAIN
  80. Thorsten Scherpf, Christopher Schwarz, Lennart T. Scharf, Jana-Alina Zur, Andreas Helbig, Viktoria H. Gessner. Ylide-Functionalized Phosphines: Strong Donor Ligands for Homogeneous Catalysis. Angewandte Chemie International Edition 2018, 57 (39) , 12859-12864. https://doi.org/10.1002/anie.201805372OpenURL UNIV OF HOUSTON MAIN
  81. Isabelle Chambrier, Luca Rocchigiani, David L. Hughes, Peter M. H. Budzelaar, Manfred Bochmann. Thermally Stable Gold(III) Alkene and Alkyne Complexes: Synthesis, Structures, and Assessment of the trans -Influence on Gold-Ligand Bond Enthalpies. Chemistry - A European Journal 2018, 24 (44) , 11467-11474. https://doi.org/10.1002/chem.201802160OpenURL UNIV OF HOUSTON MAIN
  82. David Roy, Yasuhiro Uozumi. Recent Advances in Palladium-Catalyzed Cross-Coupling Reactions at ppm to ppb Molar Catalyst Loadings. Advanced Synthesis & Catalysis 2018, 360 (4) , 602-625. https://doi.org/10.1002/adsc.201700810OpenURL UNIV OF HOUSTON MAIN
  83. Jia-Sheng Ouyang, Yan-Fang Li, Fei-Dong Huang, Dong-Dong Lu, Feng-Shou Liu. The Highly Efficient Suzuki-Miyaura Cross-Coupling of (Hetero)aryl Chlorides and (Hetero)arylboronic Acids Catalyzed by “Bulky-yet-Flexible” Palladium-PEPPSI Complexes in Air. ChemCatChem 2018, 10 (2) , 371-375. https://doi.org/10.1002/cctc.201701076OpenURL UNIV OF HOUSTON MAIN
  84. Shaoke Zhang, Helfried Neumann, Matthias Beller. Pd-Catalyzed Cyanation of (Hetero)Aryl Halides by Using Biphosphine Ligands. Chemistry - A European Journal 2018, 24 (1) , 67-70. https://doi.org/10.1002/chem.201704178OpenURL UNIV OF HOUSTON MAIN
  85. Ruixing Liu, Qiang Wang, Yin Wei, Min Shi. Synthesis of indolizine derivatives containing eight-membered rings via a gold-catalyzed two-fold hydroarylation of diynes. Chemical Communications 2018, 54 (10) , 1225-1228. https://doi.org/10.1039/C7CC09250DOpenURL UNIV OF HOUSTON MAIN
  86. Hwanjong Jang, Filippo Romiti, Sebastian Torker, Amir H. Hoveyda. Catalytic diastereo- and enantioselective additions of versatile allyl groups to N–H ketimines. Nature Chemistry 2017, 9 (12) , 1269-1275. https://doi.org/10.1038/nchem.2816OpenURL UNIV OF HOUSTON MAIN
  87. Bastien Chatelet, Paola Nava, Herve Clavier, Alexandre Martinez. Synthesis of Gold(I) Complexes Bearing Verkade's Superbases. European Journal of Inorganic Chemistry 2017, 2017 (37) , 4311-4316. https://doi.org/10.1002/ejic.201700897OpenURL UNIV OF HOUSTON MAIN
  88. Elsa Follet, Peter Mayer, David S. Stephenson, Armin R. Ofial, Guillaume Berionni. Reactivity-Tuning in Frustrated Lewis Pairs: Nucleophilicity and Lewis Basicity of Sterically Hindered Phosphines. Chemistry - A European Journal 2017, 23 (31) , 7422-7427. https://doi.org/10.1002/chem.201701080OpenURL UNIV OF HOUSTON MAIN
  89. Paul Mehlmann, Christian Mück-Lichtenfeld, Tristan T. Y. Tan, Fabian Dielmann. Tris(imidazolin-2-ylidenamino)phosphine: A Crystalline Phosphorus(III) Superbase That Splits Carbon Dioxide. Chemistry - A European Journal 2017, 23 (25) , 5929-5933. https://doi.org/10.1002/chem.201604971OpenURL UNIV OF HOUSTON MAIN
  90. David Armstrong, Fioralba Taullaj, Kamalpreet Singh, Bijan Mirabi, Alan J. Lough, Ulrich Fekl. Adamantyl metal complexes: new routes to adamantyl anions and new transmetallations. Dalton Transactions 2017, 46 (19) , 6212-6217. https://doi.org/10.1039/C7DT00428AOpenURL UNIV OF HOUSTON MAIN
  91. Meng-Qi Yan, Jia Yuan, Fang Lan, Si-Hao Zeng, Meng-Yue Gao, Sheng-Hua Liu, Jian Chen, Guang-Ao Yu. An active catalytic system for Suzuki–Miyaura cross-coupling reactions using low levels of palladium loading. Org. Biomol. Chem. 2017, 15 (18) , 3924-3929. https://doi.org/10.1039/C7OB00178AOpenURL UNIV OF HOUSTON MAIN
  • Abstract

    Figure 1

    Figure 1. Examples of β–substituent effects on the (a) TEP and (b) geometry of homoleptic phosphines. (a) χ = νCO(A1) – 2056.1 cm–1 for Ni(CO)3(PR3). (b) From solid-state data for Au(PR3)Cl.(12)

    Scheme 1

    Scheme 1. Synthesis and Properties of PAd3 (1)

    Figure 2

    Figure 2. Yield of 6 from reactions in eq 2. L/Pd = 1 in all cases.

    Scheme 2

    Scheme 2. Illustrative Examples of 4 as a General Catalyst for Suzuki–Miyaura Coupling of Chloro(hetero)arenesa

    Scheme aSee SI for 28 additional examples and full experimental details.

    Scheme bYield determined by NMR.

  • References

    ARTICLE SECTIONS
    Jump To

    This article references 39 other publications.

    1. 1

      Selected reviews and preeminent examples of phosphine effects in catalysis:

      (a) Xie, J.-H.; Zhu, S.-F.; Zhou, Q.-L. Chem. Rev. 2011, 111, 1713 DOI: 10.1021/cr100218m
      (b) Doucet, H.; Ohkuma, T.; Murata, K.; Yokozawa, T.; Kozawa, M.; Katayama, E.; England, A. F.; Ikariya, T.; Noyori, R. Angew. Chem., Int. Ed. 1998, 37, 1703 DOI: 10.1002/(SICI)1521-3773(19980703)37:12<1703::AID-ANIE1703>3.0.CO;2-I
      (c) Surry, D. S.; Buchwald, S. L. Chem. Sci. 2011, 2, 27 DOI: 10.1039/C0SC00331J
      (d) Barder, T. E.; Walker, S. D.; Martinelli, J. R.; Buchwald, S. L. J. Am. Chem. Soc. 2005, 127, 4685 DOI: 10.1021/ja042491j
      (e) Gorin, D. J.; Toste, F. D. Nature 2007, 446, 395 DOI: 10.1038/nature05592
      (f) Helmchen, G.; Pfaltz, A. Acc. Chem. Res. 2000, 33, 336 DOI: 10.1021/ar9900865
      (g) Sanford, M. S.; Love, J. A.; Grubbs, R. H. J. Am. Chem. Soc. 2001, 123, 6543 DOI: 10.1021/ja010624k
      (h) Dias, E. L.; Nguyen, S. T.; Grubbs, R. H. J. Am. Chem. Soc. 1997, 119, 3887 DOI: 10.1021/ja963136z
      (i) van der Boom, M. E.; Milstein, D. Chem. Rev. 2003, 103, 1759 DOI: 10.1021/cr960118r
    2. 2
      (a) Wei, Y.; Shi, M. Acc. Chem. Res. 2010, 43, 1005 DOI: 10.1021/ar900271g
      (b) Lu, X.; Zhang, C.; Xu, Z. Acc. Chem. Res. 2001, 34, 535 DOI: 10.1021/ar000253x
    3. 3
      Sletten, E. M.; Bertozzi, C. R. Acc. Chem. Res. 2011, 44, 666 DOI: 10.1021/ar200148z
    4. 4
      (a) Kim, S.; Lim, Y. T.; Soltesz, E. G.; De Grand, A. M.; Lee, J.; Nakayama, A.; Parker, J. A.; Mihaljevic, T.; Laurence, R. G.; Dor, D. M.; Cohn, L. H.; Bawendi, M. G.; Frangioni, J. V. Nat. Biotechnol. 2004, 22, 93 DOI: 10.1038/nbt920
      (b) Walter, M.; Akola, J.; Lopez-Acevedo, O.; Jadzinsky, P. D.; Calero, G.; Ackerson, C. J.; Whetten, R. L.; Grönbeck, H.; Häkkinen, H. Proc. Natl. Acad. Sci. U. S. A. 2008, 105, 9157 DOI: 10.1073/pnas.0801001105
    5. 5
      Myers, M.; Connor, E. F.; Glauser, T.; Möck, A.; Nyce, G.; Hedrick, J. L. J. Polym. Sci., Part A: Polym. Chem. 2002, 40, 844 DOI: 10.1002/pola.10168.abs
    6. 6
      Stephan, D. W.; Erker, G. Angew. Chem., Int. Ed. 2010, 49, 46 DOI: 10.1002/anie.200903708
    7. 7
      Petuškova, J.; Patil, M.; Holle, S.; Lehmann, C. W.; Thiel, W.; Alcarazo, M. J. Am. Chem. Soc. 2011, 133, 20758 DOI: 10.1021/ja210223s
    8. 8
      Dunn, N. L.; Ha, M.; Radosevich, A. T. J. Am. Chem. Soc. 2012, 134, 11330 DOI: 10.1021/ja302963p
    9. 9
      (a) Buß, F.; Mehlmann, P.; Mück-Lichtenfeld, C.; Bergander, K.; Dielmann, F. J. Am. Chem. Soc. 2016, 138, 1840 DOI: 10.1021/jacs.5b13116
      (b) Wünsche, M. A.; Mehlmann, P.; Witteler, T.; Buß, F.; Rathmann, P.; Dielmann, F. Angew. Chem., Int. Ed. 2015, 54, 11857 DOI: 10.1002/anie.201504993
    10. 10
      (a) Tolman, C. A. J. Am. Chem. Soc. 1970, 92, 2953 DOI: 10.1021/ja00713a006
      (b) Tolman, C. A. Chem. Rev. 1977, 77, 313 DOI: 10.1021/cr60307a002
      (c) Bartik, T.; Himmler, T.; Schulte, H. G.; Seevogel, K. J. Organomet. Chem. 1984, 272, 29 DOI: 10.1016/0022-328X(84)80440-4
    11. 11
      Wagner, J. P.; Schreiner, P. R. Angew. Chem., Int. Ed. 2015, 54, 12274 DOI: 10.1002/anie.201503476
    12. 12
      (a) Schmidbaur, H.; Brachthäuser, B.; Steigelmann, O.; Beruda, H. Chem. Ber. 1992, 125, 2705 DOI: 10.1002/cber.19921251214
      (b) Angermaier, K.; Zeller, E.; Schmidbaur, H. J. Organomet. Chem. 1994, 472, 371 DOI: 10.1016/0022-328X(94)80225-4
      (c) Tiekink, E. Acta Crystallogr., Sect. C: Cryst. Struct. Commun. 1989, 45, 1233 DOI: 10.1107/S0108270189001915
      (d) Muir, J. A.; Muir, M. M.; Pulgar, L. B.; Jones, P. G.; Sheldrick, G. M. Acta Crystallogr., Sect. C: Cryst. Struct. Commun. 1985, 41, 1174 DOI: 10.1107/S010827018500703X
      (e) Bowen, R. J.; Caddy, J.; Fernandes, M. A.; Layh, M.; Mamo, M. A. Polyhedron 2004, 23, 2273 DOI: 10.1016/j.poly.2004.07.008
    13. 13
      (a) Fleckenstein, C. A.; Plenio, H. Chem. Soc. Rev. 2010, 39, 694 DOI: 10.1039/B903646F
      (b) Agnew-Francis, K. A.; Williams, C. M. Adv. Synth. Catal. 2016, 358, 675 DOI: 10.1002/adsc.201500949
    14. 14
      (a) Rampf, F.; Militzer, H.-C. EP1354886 A1, October 22, 2003.
      (b) Maehara, S.; Iwazaki, H. Int. Pat. WO2003066643 A1, August 14, 2003.
    15. 15
      Hackett, M.; Whitesides, G. M. Organometallics 1987, 6, 403 DOI: 10.1021/om00145a027
    16. 16
      Prabagar, J.; Cowley, A. R.; Brown, J. M. Synlett 2011, 2011, 2351 DOI: 10.1055/s-0030-1260303
    17. 17
      (a) No, B. I.; Zotov, Y. L.; Karev, V. N. Zh. Obshch. Khim. 1990, 60, 1795
      (b) Goerlich, J. R.; Schmutzler, R. Phosphorus, Sulfur Silicon Relat. Elem. 1993, 81, 141 DOI: 10.1080/10426509308034383
      (c) Sasaki, T.; Nakanishi, A.; Ohno, M. J. Org. Chem. 1982, 47, 3219 DOI: 10.1021/jo00138a004
    18. 18

      The stability of pure 1 may be related to its crystallinity (mp 357 °C, dec), because a solution of 1 does oxidize when exposed to air.

    19. 19
      Charton, M. In Steric Effects in Drug Design; Springer: Berlin, 1983; Vol. 114, p 57 91.
    20. 20
      Giri, R.; Lam, J. K.; Yu, J.-Q. J. Am. Chem. Soc. 2010, 132, 686 DOI: 10.1021/ja9077705
    21. 21
      Poater, A.; Cosenza, B.; Correa, A.; Giudice, S.; Ragone, F.; Scarano, V.; Cavallo, L. Eur. J. Inorg. Chem. 2009, 2009, 1759 DOI: 10.1002/ejic.200801160
    22. 22
      (a) Müller, T.; Mingos, D. M. Transition Met. Chem. 1995, 20, 533 DOI: 10.1007/BF00136415
      (b) Clavier, H.; Nolan, S. P. Chem. Commun. 2010, 46, 841 DOI: 10.1039/b922984a
    23. 23
      Stambuli, J. P.; Incarvito, C. D.; Bühl, M.; Hartwig, J. F. J. Am. Chem. Soc. 2004, 126, 1184 DOI: 10.1021/ja037928m
    24. 24
      (a) Aranyos, A.; Old, D. W.; Kiyomori, A.; Wolfe, J. P.; Sadighi, J. P.; Buchwald, S. L. J. Am. Chem. Soc. 1999, 121, 4369 DOI: 10.1021/ja990324r
      (b) an der Heiden, M.; Plenio, H. Chem. Commun. 2007, 972 DOI: 10.1039/B616608C
      (c) Sergeev, A. G.; Spannenberg, A.; Beller, M. J. Am. Chem. Soc. 2008, 130, 15549 DOI: 10.1021/ja804997z
      (d) Gowrisankar, S.; Sergeev, A. G.; Anbarasan, P.; Spannenberg, A.; Neumann, H.; Beller, M. J. Am. Chem. Soc. 2010, 132, 11592 DOI: 10.1021/ja103248d
      (e) Su, M.; Buchwald, S. L. Angew. Chem., Int. Ed. 2012, 51, 4710 DOI: 10.1002/anie.201201244
    25. 25
      (a) Kühl, O. Coord. Chem. Rev. 2005, 249, 693 DOI: 10.1016/j.ccr.2004.08.021
      (b) Rahman, M. M.; Liu, H. Y.; Eriks, K.; Prock, A.; Giering, W. P. Organometallics 1989, 8, 1 DOI: 10.1021/om00103a001
    26. 26
      Serron, S.; Huang, J.; Nolan, S. P. Organometallics 1998, 17, 534 DOI: 10.1021/om970766g
    27. 27
      Nelson, D. J.; Nolan, S. P. Chem. Soc. Rev. 2013, 42, 6723 DOI: 10.1039/c3cs60146c
    28. 28
      (a) Spokoyny, A. M.; Lewis, C. D.; Teverovskiy, G.; Buchwald, S. L. Organometallics 2012, 31, 8478 DOI: 10.1021/om301116x
      (b) Mohr, B.; Lynn, D. M.; Grubbs, R. H. Organometallics 1996, 15, 4317 DOI: 10.1021/om9603373
    29. 29
      (a) Allman, T.; Goel, R. G. Can. J. Chem. 1982, 60, 716 DOI: 10.1139/v82-106
      (b) Abdur-Rashid, K.; Fong, T. P.; Greaves, B.; Gusev, D. G.; Hinman, J. G.; Landau, S. E.; Lough, A. J.; Morris, R. H. J. Am. Chem. Soc. 2000, 122, 9155 DOI: 10.1021/ja994428d
    30. 30
      Pinnell, R. P.; Megerle, C. A.; Manatt, S. L.; Kroon, P. A. J. Am. Chem. Soc. 1973, 95, 977 DOI: 10.1021/ja00784a087
    31. 31
      Laube, T. Angew. Chem., Int. Ed. Engl. 1986, 25, 349 DOI: 10.1002/anie.198603491
    32. 32
      Lyngvi, E.; Sanhueza, I. A.; Schoenebeck, F. Organometallics 2015, 34, 805 DOI: 10.1021/om501199t
    33. 33
      (a) Hehre, W. J.; Pau, C. F.; Headley, A. D.; Taft, R. W.; Topsom, R. D. J. Am. Chem. Soc. 1986, 108, 1711 DOI: 10.1021/ja00267a063
      (b) Hansch, C.; Leo, A.; Taft, R. W. Chem. Rev. 1991, 91, 165 DOI: 10.1021/cr00002a004
    34. 34
      Ngola, S. M.; Dougherty, D. A. J. Org. Chem. 1996, 61, 4355 DOI: 10.1021/jo960521y
    35. 35
      (a) Fu, G. C. Acc. Chem. Res. 2008, 41, 1555 DOI: 10.1021/ar800148f
      (b) Zapf, A.; Ehrentraut, A.; Beller, M. Angew. Chem., Int. Ed. 2000, 39, 4153 DOI: 10.1002/1521-3773(20001117)39:22<4153::AID-ANIE4153>3.0.CO;2-T
    36. 36

      See SI for a comparison of PAd3 and XPhos under conditions optimized for the later.

    37. 37
      (a) Torborg, C.; Beller, M. Adv. Synth. Catal. 2009, 351, 3027 DOI: 10.1002/adsc.200900587
      (b) de Vries, J. G. Top. Organomet. Chem. 2012, 42, 1 DOI: 10.1007/3418_2012_32
    38. 38
      (a) Bedford, R. B.; Cazin, C. S. J.; Hazelwood, S. L. Angew. Chem., Int. Ed. 2002, 41, 4120 DOI: 10.1002/1521-3773(20021104)41:21<4120::AID-ANIE4120>3.0.CO;2-7
      (b) Handa, S.; Andersson, M. P.; Gallou, F.; Reilly, J.; Lipshutz, B. H. Angew. Chem., Int. Ed. 2016, 55, 4914 DOI: 10.1002/anie.201510570
    39. 39
      Kinzel, T.; Zhang, Y.; Buchwald, S. L. J. Am. Chem. Soc. 2010, 132, 14073 DOI: 10.1021/ja1073799
  • Supporting Information

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/jacs.6b03215.

    • Experimental details and data (PDF)

    • Crystallographic data (CIF)

    • Crystallographic data (CIF)


    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

You’ve supercharged your research process with ACS and Mendeley!

STEP 1:
Click to create an ACS ID

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

MENDELEY PAIRING EXPIRED
Your Mendeley pairing has expired. Please reconnect

This website uses cookies to improve your user experience. By continuing to use the site, you are accepting our use of cookies. Read the ACS privacy policy.

CONTINUE