ACS Publications. Most Trusted. Most Cited. Most Read
CONTENT TYPES

Figure 1Loading Img

“Cationic” Suzuki–Miyaura Coupling with Acutely Base-Sensitive Boronic Acids

View Author Information
Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
Cite this: J. Am. Chem. Soc. 2017, 139, 36, 12418–12421
Publication Date (Web):September 1, 2017
https://doi.org/10.1021/jacs.7b07687
Copyright © 2017 American Chemical Society
Subscribed Access
Article Views
6959
Altmetric
-
Citations
LEARN ABOUT THESE METRICS
PDF (1 MB) OpenURL UNIV OF HOUSTON MAIN
Supporting Info (2)»

Abstract

Fast, base-promoted protodeboronation of polyfluoroaryl and heteroaryl boronic acids complicates their use in Suzuki–Miyaura coupling (SMC) because a base is generally required for catalysis. We report a “cationic” SMC method using a PAd3-Pd catalyst that proceeds at rt in the absence of a base or metal mediator. A wide range of sensitive boronic acids, particularly polyfluoroaryl substrates that are poorly compatible with classic SMC conditions, undergo clean coupling. Stoichiometric experiments implicate the intermediacy of organopalladium cations, which supports a long-postulated cationic pathway for transmetalation in SMC.

Organoboronic acids rank among the most popular organometallic reagents used in cross-coupling thanks to their wide structural diversity and versatile reactivity.(1) Heteroatom-containing organoboronic acids are notable among these due to the prevalence of the associated organic fragments, but many are prone to base-promoted protodeboronation (PDB)(2) that has complicated their use in catalysis. In more severe cases, particularly regarding polyfluoroaryl (Scheme 1a)(2a) and 2-heteroaryl boronic acids, competing PDB can significantly impede cross-coupling using even state-of-the-art catalysts.(3) As a result, a number of attractive, commercially available boronic acids are simply incompatible with classic Suzuki–Miyaura coupling (SMC) that requires a base.(4) More broadly, the “base problem”(5) compromises the compatibility of SMC with many compounds possessing sensitive functionality.

Scheme 1

Scheme 1. (a) Fluorine Effect on Protodeboronation and (b–c) Catalysis with Unstable Boronic Acids

One strategy to combat PDB involves substitution of the boronic acid for masked analogues such as Molander’s trifluoroborates or Burke’s MIDA boronates,(6) which can slowly release the active species in situ (Scheme 1b).(7) Alternative organometallic reagents have also been developed for polyfluoroarylation,(8, 9) but few are commercially available, unlike polyfluoroaryl boronic acids. Decoupling the antagonist roles of base in promoting catalysis versus boronic acid decomposition could provide a more direct solution to this base problem.(5) Here, we report a room temperature SMC protocol using a PAd3-Pd catalyst and aryldiazonium salts that operates under nonbasic conditions (Scheme 1c).(10) Even the most base-sensitive boronic acids are compatible with this method thereby expanding significantly the range of arene fluorination patterns accessible by SMC.

While removing a base from SMC would surely slow the PDB of sensitive boronic acids, the concomitant suppression of transmetalation (TM) rates has been historically problematic. One possibility to circumvent this mechanistic entanglement would be to access catalysts that are intrinsically much more reactive toward boronic acid TM to the extent that practical reaction rates are possible even without a stoichiometric base or metal mediator.(10, 11) Coordinatively unsaturated organopalladium cations are thus attractive targets because TM reactions are generally faster at more electrophilic metals,(12) and low coordination number complexes tend to be highly reactive. Miyaura previously postulated that base-free TM can occur via Pd cations, but experimental evidence with catalytically relevant complexes remains rare.(13)

The SMC of aryldiazonium salts with simple arylboronic acids has been shown to occur without an added base in some cases,(14) but we found that the dative ligand-free (“ligandless”) Pd used in these methods is not a competent catalyst for the model SMC between 1 and C6F5B(OH)2, one of the most base-sensitive boronic acids (Table 1, entry 1). On the other hand, hindered monophosphines are known to stabilize low coordinate organopalladium complexes.(15) Upon screening a number of phosphines that generate active Pd catalysts in classic SMC (entries 2–8), the admixture of the bulky ligand PAd3 (1 mol %) and Pd2(dba)3 (0.55 mol %) was identified as superior and generated a near-quantitative yield of biaryl 2 within 1 h at rt.(16) On the other hand, SMC using this same catalyst under conventional conditions with NaOH as the base (entry 9) suppressed the desired reaction and increased side product formation.

Table 1. Catalyst Identification for Cationic SMCa
entryligandyield 2 (%)b
1 0
2PPh30
3PCy30
4PAd2(n-Bu)0
5SPhos0
6Xantphos0
7P(t-Bu)380
8PAd397
9cNaOH (1 equiv) and PAd333
a

Conditions: 1 (0.5 mmol), C6F5B(OH)2 (0.75 mmol), Pd2(dba)3, and PAd3 stirred in THF (5 mL).

b

Determined by 19F NMR versus 1,3-C6F2H4.

c

C6F5H detected (15%).

Upon identification of this highly active catalyst, a collection of 15 challenging boronic acids was next evaluated that spanned 2-furyl, 2-thienyl, or N-Boc-2-pyrrolyl examples and arylboronic acids possessing one to five fluorine atoms (Table 2). High isolated yields (80–98%) of biaryl were observed across this suite of nucleophiles,(17) which represents, to our knowledge, an unrivaled scope for boronic acids with three or more electronegative atoms proximal to boron. 2-Pyridylboronic acid was also surveyed but did not react under the standard conditions. This protocol thus provides a mild alternative to classic Ullmann coupling or nucleophilic aromatic substitution reactions commonly used to forge polyfluoroaromatic motifs in conjugated materials(18) and catalysts.(19)

Table 2. Scope of Unstable (Hetero)Arylboronic Acids (Left) and (Hetero)Aryldiazonium Salts (Right)a
Table a

Isolated yields.

Table b

10 h.

Table c

1.1 equiv of diboronic acid, 5 h. Product isolated as the pinacol ester.

Table d

3 mol % PAd3, 1.5 mol % Pd2dba3, 3 h.

The scope of the (hetero)aryl electrophile was also explored using C6F5B(OH)2 as a nucleophile (Table 2). The isolated yield of biaryl was insensitive to substituent electronic effects, though a hindered o-Cl group did reduce the yield at 1 h. A coordinating quinoline substrate also slowed the reaction, but significant biaryl was nevertheless isolated after the standard 1 h reaction time suggesting a reasonable tolerance toward catalyst poisoning. As such, we also tested the polyfluoroarylation of amino-containing drugs (aminoglutethimide, sulfachloropyridazine, and sulfamethizole) by initial diazotization and then cationic SMC. The resulting derivatives were isolated in moderate but synthetically useful yields (44–54%), which again emphasizes that the PAd3–Pd catalyst can retain activity even with increasing substrate complexity.

Notably, we found that cationic SMC of 1 with 2,6-difluoro-1,4-phenylenediboronic acid occurred exclusively at C1 to give a high biaryl yield (91%). To date, iterative SMC methods have relied primarily on chemoselection using differentially protected boron groups;(20) site selective SMC directly with diboronic acids is rare.(21, 22) As a simple demonstration of this concept, we attempted to precisely position fluorine in a model terphenyl related to donor-π-acceptor oligomers,(23) given the significant effects fluorination can have on organic electronic properties.(18a, 24) An iterative one-pot sequence (Scheme 2) was initiated by cationic SMC using a PAd3–Pd catalyst. After 5 h, a traditional SMC was then triggered by addition of KOH and a second electrophile to complete the synthesis of 3.

Scheme 2

Scheme 2. Iterative, One-Pot Cationic Then Classic SMC

To shed light on the key boronic acid TM step of these reactions that operates without added base, we attempted to experimentally assess the competency of a PAd3-coordinated organopalladium cation as a catalytic intermediate. Organopalladium cations have been implicated in a variety of catalytic transformations, including C–H activation,(25) polymerization,(26) Mizoroki–Heck,(27) and carbonylations,(28) but analogues with a single dative ligand are rare and their reactivity poorly understood.(28, 29) We thus attempted the synthesis of relevant species. Beginning from the neutral, T-shaped complex 4, abstraction of chloride by AgX (X = OTf, BF4, or SbF6) in THF at −78 °C generated three new species (57) as illustrated in Scheme 3. These complexes were each stable in solution at −25 °C over a period of hours as determined by 19F NMR spectroscopy, but did gradually decompose upon warming or concentration.(30, 31) Solution characterization by multinuclear NMR and FT-IR spectroscopy suggest 5 and 6 exist as ion pairs and 7 exists as a neutral complex (Supporting Information (SI)). The solvento ligand may be a mixture of THF and aqua ligands but could not be determined unambiguously (see SI for full details).

Scheme 3

Scheme 3. Synthesis of Unsaturated Organo-Pd Cationsa

Scheme aThermal ellipsoids shown at 35% probability; H atoms omitted.

The cationic complexes were subsequently found to be highly reactive. Biaryl 8 formed in high yield (88–93%) upon addition of C6F5B(OH)2 to a solution of either cationic complex 5 or 6 within 90 min at −25 °C in the absence of any additives (Scheme 4). Complex 5 (1 mol %) also served as an effective catalyst under the conditions outlined in Table 1 affording 2 in high yield (94%) after 1 h. Curiously, the neutral complex 7 failed to generate biaryl at −25 °C or even at rt after 30 min (SI), which could occur by the combination of stronger anion coordination to Pd and generation of a stronger acid byproduct. It was thus particularly surprising to then observe that the direct reaction of neutral complex 4 with C6F5B(OH)2 generated significant biaryl (48%) within 30 min at rt (Scheme 4). Fluorobenzene (52%) was also formed, presumably by a side reaction of 4 with the HCl byproduct. This result contradicts accepted knowledge that organopalladium halide complexes do not react with boronic acids.(13b, 32) A detailed mechanistic study will be the subject of future work, but we tentatively propose the potent σ-donicity of PAd3(3b) may promote chloride dissociation in 4 to generate a palladium cation analogous to 5 or 6 that was established (Scheme 4) to rapidly react with boronic acid. Moreover, these data suggest to us that “base-free” SMC with more abundant haloarenes may be feasible if the HX byproduct can be effectively sequestered during catalysis.

Scheme 4

Scheme 4. Stoichiometric Transmetalation Reactionsa

Scheme aYields determined by 19F NMR versus 1,3,5-(CF3)3C6H3.

In summary, a room temperature polyfluoroarylation method by “cationic” Suzuki–Miyaura coupling has been developed using aryldiazonium salts and polyfluoroaryl boronic acids. The diversity of compatible fluoroaromatic motifs applicable to this method is unrivaled in SMC thanks to the nonbasic conditions that suppress protodeboronation. Coordinatively unsaturated organopalladium cations are implicated in boronic acid transmetalation by the fast reaction of [Pd(PAd3)(Ar)(S)]+ complexes with C6F5B(OH)2 to generate biaryl even at cryogenic temperature and in the absence of added base. We also demonstrated that a boronic acid can directly react with an arylpalladium chloride complex (4), which runs counter to conventional wisdom about the necessity of base for cross-coupling of haloarenes and boronic acids. These data highlight the synthetic potential of low coordinate organometallic cations to capture even weak nucleophiles under mild conditions, which could provide a strategy to overcome the “base problem”(5) that has persisted in Suzuki–Miyaura coupling.

Supporting Information

ARTICLE SECTIONS
Jump To

The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/jacs.7b07687.

  • Experimental procedures and spectral data for new compounds (PDF)

  • Crystallographic data (CIF)

Terms & Conditions

Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

Author Information

ARTICLE SECTIONS
Jump To

  • Corresponding Author
  • Authors
    • Liye Chen - Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
    • Daniel R. Sanchez - Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
    • Bufan Zhang - Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
  • Notes
    The authors declare the following competing financial interest(s): A patent was filed by Princeton University: Carrow, B. P.; Chen, L. WO2017/075581 A1, May 4, 2017.

Acknowledgment

ARTICLE SECTIONS
Jump To

Financial support was provided by Princeton University. We thank Kenith Conover for assistance with NMR experiments.

References

ARTICLE SECTIONS
Jump To

This article references 32 other publications.

  1. 1
    Hall, D. G. Boronic Acids: Preparation and Applications in Organic Synthesis. Medicine and Materials; 2nd ed.; Wiley-VCH: Weinheim, 2011.
  2. 2
    (a) Cox, P. A.; Reid, M.; Leach, A. G.; Campbell, A. D.; King, E. J.; Lloyd-Jones, G. C. J. Am. Chem. Soc. 2017, in press, DOI:  DOI: 10.1021/jacs.7b07444 .
    (b) Cox, P. A.; Leach, A. G.; Campbell, A. D.; Lloyd-Jones, G. C. J. Am. Chem. Soc. 2016, 138, 9145 DOI: 10.1021/jacs.6b03283
    (c) Frohn, H. J.; Adonin, N. Y.; Bardin, V. V.; Starichenko, V. F. Z. Anorg. Allg. Chem. 2002, 628, 2834 DOI: 10.1002/1521-3749(200213)628:13<2834::AID-ZAAC2834>3.0.CO;2-2
    (d) Lozada, J.; Liu, Z.; Perrin, D. M. J. Org. Chem. 2014, 79, 5365 DOI: 10.1021/jo500734z
  3. 3

    For highly active Pd catalysts for SMC compatible with some polyfluoroaryl boronic acids, see:

    (a) Kinzel, T.; Zhang, Y.; Buchwald, S. L. J. Am. Chem. Soc. 2010, 132, 14073 DOI: 10.1021/ja1073799
    (b) Chen, L.; Ren, P.; Carrow, B. P. J. Am. Chem. Soc. 2016, 138, 6392 DOI: 10.1021/jacs.6b03215
  4. 4
    (a) Miyaura, N. J. Organomet. Chem. 2002, 653, 54 DOI: 10.1016/S0022-328X(02)01264-0
    (b) Lennox, A. J. J.; Lloyd-Jones, G. C. Angew. Chem., Int. Ed. 2013, 52, 7362 DOI: 10.1002/anie.201301737
    (c) Lennox, A.; Lloyd-Jones, G. New Trends in Cross-Coupling: Theory and Applications; The Royal Society of Chemistry: Cambridge, 2015; p 322.
  5. 5
    Suzuki, A. Angew. Chem., Int. Ed. 2011, 50, 6722 DOI: 10.1002/anie.201101379
  6. 6
    (a) Molander, G. A.; Ellis, N. Acc. Chem. Res. 2007, 40, 275 DOI: 10.1021/ar050199q
    (b) Knapp, D. M.; Gillis, E. P.; Burke, M. D. J. Am. Chem. Soc. 2009, 131, 6961 DOI: 10.1021/ja901416p
  7. 7
    (a) Gonzalez, J. A.; Ogba, O. M.; Morehouse, G. F.; Rosson, N.; Houk, K. N.; Leach, A. G.; Cheong, P. H. Y.; Burke, M. D.; Lloyd-Jones, G. C. Nat. Chem. 2016, 8, 1067 DOI: 10.1038/nchem.2571
    (b) Butters, M.; Harvey, J. N.; Jover, J.; Lennox, A. J. J.; Lloyd-Jones, G. C.; Murray, P. M. Angew. Chem., Int. Ed. 2010, 49, 5156 DOI: 10.1002/anie.201001522
  8. 8
    (a) Yang, Y.; Oldenhuis, N. J.; Buchwald, S. L. Angew. Chem., Int. Ed. 2013, 52, 615 DOI: 10.1002/anie.201207750
    (b) Shang, R.; Fu, Y.; Wang, Y.; Xu, Q.; Yu, H.-Z.; Liu, L. Angew. Chem., Int. Ed. 2009, 48, 9350 DOI: 10.1002/anie.200904916
    (c) Do, H.-Q.; Daugulis, O. J. Am. Chem. Soc. 2008, 130, 1128 DOI: 10.1021/ja077862l
    (d) Molander, G. A.; Biolatto, B. J. Org. Chem. 2003, 68, 4302 DOI: 10.1021/jo0342368
    (e) Kohlmann, J.; Braun, T.; Laubenstein, R.; Herrmann, R. Chem. - Eur. J. 2017, in press, DOI:  DOI: 10.1002/chem.201700549 .
  9. 9

    For related direct arylation reactions, see:

    Lafrance, M.; Rowley, C. N.; Woo, T. K.; Fagnou, K. J. Am. Chem. Soc. 2006, 128, 8754 DOI: 10.1021/ja062509l
  10. 10

    Stoichiometric Cu(I) can mediate transmetalation to Pd under neutral conditions:

    (a) Liebeskind, L. S.; Srogl, J. J. Am. Chem. Soc. 2000, 122, 11260 DOI: 10.1021/ja005613q
    (b) Savarin, C.; Liebeskind, L. S. Org. Lett. 2001, 3, 2149 DOI: 10.1021/ol010060p
    (c) Liebeskind, L. S.; Srogl, J. Org. Lett. 2002, 4, 979 DOI: 10.1021/ol0200091
    (d) Yu, Y.; Liebeskind, L. S. J. Org. Chem. 2004, 69, 3554 DOI: 10.1021/jo049964p
    (e) Crowley, B. M.; Potteiger, C. M.; Deng, J. Z.; Prier, C. K.; Paone, D. V.; Burgey, C. S. Tetrahedron Lett. 2011, 52, 5055 DOI: 10.1016/j.tetlet.2011.07.088
  11. 11
    (a) Korenaga, T.; Kosaki, T.; Fukumura, R.; Ema, T.; Sakai, T. Org. Lett. 2005, 7, 4915 DOI: 10.1021/ol051866i
    (b) Frohn, H. J.; Adonin, N. Y.; Bardin, V. V.; Starichenko, V. F. Tetrahedron Lett. 2002, 43, 8111 DOI: 10.1016/S0040-4039(02)01922-6
  12. 12
    (a) Jover, J.; Fey, N.; Purdie, M.; Lloyd-Jones, G. C.; Harvey, J. N. J. Mol. Catal. A: Chem. 2010, 324, 39 DOI: 10.1016/j.molcata.2010.02.021
    (b) Ariafard, A.; Lin, Z.; Fairlamb, I. J. S. Organometallics 2006, 25, 5788 DOI: 10.1021/om0607705
    (c) Ariafard, A.; Yates, B. F. J. Am. Chem. Soc. 2009, 131, 13981 DOI: 10.1021/ja9007134
  13. 13
    (a) Siegmann, K.; Pregosin, P. S.; Venanzi, L. M. Organometallics 1989, 8, 2659 DOI: 10.1021/om00113a023
    (b) Nishikata, T.; Yamamoto, Y.; Miyaura, N. Organometallics 2004, 23, 4317 DOI: 10.1021/om0498044
    (c) Holder, J. C.; Zou, L.; Marziale, A. N.; Liu, P.; Lan, Y.; Gatti, M.; Kikushima, K.; Houk, K. N.; Stoltz, B. M. J. Am. Chem. Soc. 2013, 135, 14996 DOI: 10.1021/ja401713g
    (d) Xu, L.; Hilton, M. J.; Zhang, X.; Norrby, P.-O.; Wu, Y.-D.; Sigman, M. S.; Wiest, O. J. Am. Chem. Soc. 2014, 136, 1960 DOI: 10.1021/ja4109616
  14. 14
    (a) Oger, N.; d’Halluin, M.; Le Grognec, E.; Felpin, F.-X. Org. Process Res. Dev. 2014, 18, 1786 DOI: 10.1021/op500299t
    (b) Roglans, A.; Pla-Quintana, A.; Moreno-Mañas, M. Chem. Rev. 2006, 106, 4622 DOI: 10.1021/cr0509861
    (c) Frohn, H.-J.; Adonin, N. Y.; Bardin, V. V.; Starichenko, V. F. J. Fluorine Chem. 2002, 117, 115 DOI: 10.1016/S0022-1139(02)00157-4
  15. 15
    Stambuli, J. P.; Incarvito, C. D.; Bühl, M.; Hartwig, J. F. J. Am. Chem. Soc. 2004, 126, 1184 DOI: 10.1021/ja037928m
  16. 16

    Negligible PDB side product (<5% C6F5H) was observed.

  17. 17

    Generation of stoichiometric acid byproduct is suggested by initial formation of basic biaryl products, such as 2, in their conjugate acid form.

  18. 18
    (a) Facchetti, A.; Yoon, M.-H.; Stern, C. L.; Katz, H. E.; Marks, T. J. Angew. Chem., Int. Ed. 2003, 42, 3900 DOI: 10.1002/anie.200351253
    (b) Tsuzuki, T.; Shirasawa, N.; Suzuki, T.; Tokito, S. Adv. Mater. 2003, 15, 1455 DOI: 10.1002/adma.200305034
    (c) Heidenhain, S. B.; Sakamoto, Y.; Suzuki, T.; Miura, A.; Fujikawa, H.; Mori, T.; Tokito, S.; Taga, Y. J. Am. Chem. Soc. 2000, 122, 10240 DOI: 10.1021/ja002309o
  19. 19
    Gates, D. P.; Svejda, S. A.; Oñate, E.; Killian, C. M.; Johnson, L. K.; White, P. S.; Brookhart, M. Macromolecules 2000, 33, 2320 DOI: 10.1021/ma991234+
  20. 20
    (a) Lee, J. C. H.; McDonald, R.; Hall, D. G. Nat. Chem. 2011, 3, 894 DOI: 10.1038/nchem.1150
    (b) Fyfe, J. W. B.; Fazakerley, N. J.; Watson, A. J. B. Angew. Chem., Int. Ed. 2017, 56, 1249 DOI: 10.1002/anie.201610797
  21. 21
    (a) Mlynarski, S. N.; Schuster, C. H.; Morken, J. P. Nature 2013, 505, 386 DOI: 10.1038/nature12781
    (b) Crudden, C. M.; Ziebenhaus, C.; Rygus, J. P. G.; Ghozati, K.; Unsworth, P. J.; Nambo, M.; Voth, S.; Hutchinson, M.; Laberge, V. S.; Maekawa, Y.; Imao, D. Nat. Commun. 2016, 7, 11065 DOI: 10.1038/ncomms11065
  22. 22

    Polyhaloarenes can also be used for site selective SMC:

    Wang, J.-R.; Manabe, K. Synthesis 2009, 2009, 1405 DOI: 10.1055/s-0029-1216632
  23. 23
    Velusamy, M.; Justin Thomas, K. R.; Lin, J. T.; Hsu, Y.-C.; Ho, K.-C. Org. Lett. 2005, 7, 1899 DOI: 10.1021/ol050417f
  24. 24
    (a) Ying, L.; Hsu, B. B. Y.; Zhan, H.; Welch, G. C.; Zalar, P.; Perez, L. A.; Kramer, E. J.; Nguyen, T.-Q.; Heeger, A. J.; Wong, W.-Y.; Bazan, G. C. J. Am. Chem. Soc. 2011, 133, 18538 DOI: 10.1021/ja207543g
    (b) Price, S. C.; Stuart, A. C.; Yang, L.; Zhou, H.; You, W. J. Am. Chem. Soc. 2011, 133, 4625 DOI: 10.1021/ja1112595
  25. 25
    Nishikata, T.; Abela, A. R.; Huang, S.; Lipshutz, B. H. Beilstein J. Org. Chem. 2016, 12, 1040 DOI: 10.3762/bjoc.12.99
  26. 26
    Walter, M. D.; White, P. S.; Brookhart, M. New J. Chem. 2013, 37, 1128 DOI: 10.1039/c3nj41145a
  27. 27
    Brown, J. M.; Hii, K. K. Angew. Chem., Int. Ed. Engl. 1996, 35, 657 DOI: 10.1002/anie.199606571
  28. 28
    Yamamoto, A.; Kayaki, Y.; Nagayama, K.; Shimizu, I. Synlett 2000, 925
  29. 29
    Osborn, J. A.; Schrock, R. R. J. Am. Chem. Soc. 1971, 93, 3089 DOI: 10.1021/ja00741a069
  30. 30

    4,4′-Difluorobiphenyl was the main organic byproduct.

  31. 31
    (a) Kayaki, Y.; Shimizu, I.; Yamamoto, A. Bull. Chem. Soc. Jpn. 1997, 70, 1135 DOI: 10.1246/bcsj.70.1135
    (b) Kawataka, F.; Shimizu, I.; Yamamoto, A. Bull. Chem. Soc. Jpn. 1995, 68, 654 DOI: 10.1246/bcsj.68.654
  32. 32
    Braga, A. A. C.; Morgon, N. H.; Ujaque, G.; Maseras, F. J. Am. Chem. Soc. 2005, 127, 9298 DOI: 10.1021/ja050583i

Cited By


This article is cited by 50 publications.

  1. Amit Dahiya, Franziska Schoenebeck. Base-Mediated Direct C–H Germylation of Heteroarenes and Arenes. Organic Letters 2021, 23 (15) , 6010-6013. https://doi.org/10.1021/acs.orglett.1c02079OpenURL UNIV OF HOUSTON MAIN
  2. Fanyang Mo, Di Qiu, Lei Zhang, Jianbo Wang. Recent Development of Aryl Diazonium Chemistry for the Derivatization of Aromatic Compounds. Chemical Reviews 2021, 121 (10) , 5741-5829. https://doi.org/10.1021/acs.chemrev.0c01030OpenURL UNIV OF HOUSTON MAIN
  3. Naeem Iqbal, Da Seul Lee, Hoimin Jung, Eun Jin Cho. Synergistic Effects of Boron and Oxygen Interaction Enabling Nickel-Catalyzed Exogenous Base-Free Stereoselective Arylvinylation of Alkynes through Vinyl Transposition. ACS Catalysis 2021, 11 (9) , 5017-5025. https://doi.org/10.1021/acscatal.1c00536OpenURL UNIV OF HOUSTON MAIN
  4. Hong-Chao Liu, Yuke Li, Xiao-Ping Gong, Zhi-Jie Niu, Yu-Zhao Wang, Ming Li, Wei-Yu Shi, Zhe Zhang, Yong-Min Liang. Cu-Catalyzed Direct C–H Alkylation of Polyfluoroarenes via Remote C(sp3)–H Functionalization in Carboxamides. Organic Letters 2021, 23 (7) , 2693-2698. https://doi.org/10.1021/acs.orglett.1c00586OpenURL UNIV OF HOUSTON MAIN
  5. Kevin Breitwieser, Peter Chen. Development of the “Diverted Heck” Reaction for the Synthesis of Five-Membered Rings. Organometallics 2021, 40 (6) , 776-782. https://doi.org/10.1021/acs.organomet.1c00025OpenURL UNIV OF HOUSTON MAIN
  6. Sii Hong Lau, Peng Yu, Liye Chen, Christina B. Madsen-Duggan, Michael J. Williams, Brad P. Carrow. Aryl Amination Using Soluble Weak Base Enabled by a Water-Assisted Mechanism. Journal of the American Chemical Society 2020, 142 (47) , 20030-20039. https://doi.org/10.1021/jacs.0c09275OpenURL UNIV OF HOUSTON MAIN
  7. Jing-Jing Yang, Zheng Xu, Yi-Xue Nie, Si-Qi Lu, Jin Zhang, Li-Wen Xu. Long-Distance Chirality Transfer from P-Ligand to Prochiral Dihydrosilanes via Pd(II) Aryl Iodide Complex in Pd-Catalyzed Silylation of Aryl Iodide: A DFT Study. The Journal of Organic Chemistry 2020, 85 (22) , 14360-14368. https://doi.org/10.1021/acs.joc.0c00202OpenURL UNIV OF HOUSTON MAIN
  8. Koji Kubota, Rikuro Takahashi, Minami Uesugi, Hajime Ito. A Glove-Box- and Schlenk-Line-Free Protocol for Solid-State C–N Cross-Coupling Reactions Using Mechanochemistry. ACS Sustainable Chemistry & Engineering 2020, 8 (44) , 16577-16582. https://doi.org/10.1021/acssuschemeng.0c05834OpenURL UNIV OF HOUSTON MAIN
  9. Gen Li, Ziyang Qin, Alexander T. Radosevich. P(III)/P(V)-Catalyzed Methylamination of Arylboronic Acids and Esters: Reductive C–N Coupling with Nitromethane as a Methylamine Surrogate. Journal of the American Chemical Society 2020, 142 (38) , 16205-16210. https://doi.org/10.1021/jacs.0c08035OpenURL UNIV OF HOUSTON MAIN
  10. Florian D’Accriscio, Alexia Ohleier, Emmanuel Nicolas, Matthieu Demange, Olivier Thillaye Du Boullay, Nathalie Saffon-Merceron, Marie Fustier-Boutignon, Elixabete Rezabal, Gilles Frison, Noel Nebra, Nicolas Mézailles. [(dcpp)Ni(η2-Arene)] Precursors: Synthesis, Reactivity, and Catalytic Application to the Suzuki–Miyaura Reaction. Organometallics 2020, 39 (10) , 1688-1699. https://doi.org/10.1021/acs.organomet.9b00834OpenURL UNIV OF HOUSTON MAIN
  11. Thomas Barber, Stephen P. Argent, Liam T. Ball. Expanding Ligand Space: Preparation, Characterization, and Synthetic Applications of Air-Stable, Odorless Di-tert-alkylphosphine Surrogates. ACS Catalysis 2020, 10 (10) , 5454-5461. https://doi.org/10.1021/acscatal.0c01414OpenURL UNIV OF HOUSTON MAIN
  12. Amit Dahiya, Christoph Fricke, Franziska Schoenebeck. Gold-Catalyzed Chemoselective Couplings of Polyfluoroarenes with Aryl Germanes and Downstream Diversification. Journal of the American Chemical Society 2020, 142 (17) , 7754-7759. https://doi.org/10.1021/jacs.0c02860OpenURL UNIV OF HOUSTON MAIN
  13. Antonio Reina, Tetiana Krachko, Killian Onida, Didier Bouyssi, Erwann Jeanneau, Nuno Monteiro, Abderrahmane Amgoune. Development and Mechanistic Investigations of a Base-Free Suzuki–Miyaura Cross-Coupling of α,α-Difluoroacetamides via C–N Bond Cleavage. ACS Catalysis 2020, 10 (3) , 2189-2197. https://doi.org/10.1021/acscatal.9b05159OpenURL UNIV OF HOUSTON MAIN
  14. Yuichiro Mutoh, Kensuke Yamamoto, Shinichi Saito. Suzuki–Miyaura Cross-Coupling of 1,8-Diaminonaphthalene (dan)-Protected Arylboronic Acids. ACS Catalysis 2020, 10 (1) , 352-357. https://doi.org/10.1021/acscatal.9b03667OpenURL UNIV OF HOUSTON MAIN
  15. Roshan K. Dhungana, Shekhar KC, Prakash Basnet, Vivek Aryal, Lucas J. Chesley, Ramesh Giri. Ni(I)-Catalyzed β,δ-Vinylarylation of γ,δ-Alkenyl α-Cyanocarboxylic Esters via Contraction of Transient Nickellacycles. ACS Catalysis 2019, 9 (12) , 10887-10893. https://doi.org/10.1021/acscatal.9b03574OpenURL UNIV OF HOUSTON MAIN
  16. Huaiyuan Hu, Monica Vasiliu, Trent H. Stein, Fengrui Qu, Deidra L. Gerlach, David A. Dixon, Kevin H. Shaughnessy. Synthesis, Structural Characterization, and Coordination Chemistry of (Trineopentylphosphine)palladium(aryl)bromide Dimer Complexes ([(Np3P)Pd(Ar)Br]2). Inorganic Chemistry 2019, 58 (19) , 13299-13313. https://doi.org/10.1021/acs.inorgchem.9b02164OpenURL UNIV OF HOUSTON MAIN
  17. José J. Fuentes-Rivera, Mary E. Zick, M. Alexander Düfert, Phillip J. Milner. Overcoming Halide Inhibition of Suzuki–Miyaura Couplings with Biaryl Monophosphine-Based Catalysts. Organic Process Research & Development 2019, 23 (8) , 1631-1637. https://doi.org/10.1021/acs.oprd.9b00255OpenURL UNIV OF HOUSTON MAIN
  18. Jun Yi, Shorouk O. Badir, Lisa Marie Kammer, María Ribagorda, Gary A. Molander. Deaminative Reductive Arylation Enabled by Nickel/Photoredox Dual Catalysis. Organic Letters 2019, 21 (9) , 3346-3351. https://doi.org/10.1021/acs.orglett.9b01097OpenURL UNIV OF HOUSTON MAIN
  19. Lars P. E. Yunker, Zohrab Ahmadi, Jessamyn R. Logan, Wenzhao Wu, Tengfei Li, A. Martindale, Allen G. Oliver, J. Scott McIndoe. Real-Time Mass Spectrometric Investigations into the Mechanism of the Suzuki–Miyaura Reaction. Organometallics 2018, 37 (22) , 4297-4308. https://doi.org/10.1021/acs.organomet.8b00705OpenURL UNIV OF HOUSTON MAIN
  20. Prakash Basnet, Shekhar KC, Roshan K. Dhungana, Bijay Shrestha, Timothy J. Boyle, Ramesh Giri. Synergistic Bimetallic Ni/Ag and Ni/Cu Catalysis for Regioselective γ,δ-Diarylation of Alkenyl Ketimines: Addressing β-H Elimination by in Situ Generation of Cationic Ni(II) Catalysts. Journal of the American Chemical Society 2018, 140 (46) , 15586-15590. https://doi.org/10.1021/jacs.8b09401OpenURL UNIV OF HOUSTON MAIN
  21. Liye Chen, Haydn Francis, Brad P. Carrow. An “On-Cycle” Precatalyst Enables Room-Temperature Polyfluoroarylation Using Sensitive Boronic Acids. ACS Catalysis 2018, 8 (4) , 2989-2994. https://doi.org/10.1021/acscatal.8b00341OpenURL UNIV OF HOUSTON MAIN
  22. John J. Molloy, Ciaran P. Seath, Matthew J. West, Calum McLaughlin, Neal J. Fazakerley, Alan R. Kennedy, David J. Nelson, and Allan J. B. Watson . Interrogating Pd(II) Anion Metathesis Using a Bifunctional Chemical Probe: A Transmetalation Switch. Journal of the American Chemical Society 2018, 140 (1) , 126-130. https://doi.org/10.1021/jacs.7b11180OpenURL UNIV OF HOUSTON MAIN
  23. David Bulfield and Stefan M. Huber . Synthesis of Polyflourinated Biphenyls; Pushing the Boundaries of Suzuki–Miyaura Cross Coupling with Electron-Poor Substrates. The Journal of Organic Chemistry 2017, 82 (24) , 13188-13203. https://doi.org/10.1021/acs.joc.7b02267OpenURL UNIV OF HOUSTON MAIN
  24. Paul A. Cox, Marc Reid, Andrew G. Leach, Andrew D. Campbell, Edward J. King, and Guy C. Lloyd-Jones . Base-Catalyzed Aryl-B(OH)2 Protodeboronation Revisited: From Concerted Proton Transfer to Liberation of a Transient Aryl Anion. Journal of the American Chemical Society 2017, 139 (37) , 13156-13165. https://doi.org/10.1021/jacs.7b07444OpenURL UNIV OF HOUSTON MAIN
  25. Roshan K. Dhungana, Vivek Aryal, Doleshwar Niroula, Rishi R. Sapkota, Margaret G. Lakomy, Ramesh Giri. Nickel‐Catalyzed Regioselective Alkenylarylation of γ,δ‐Alkenyl Ketones via Carbonyl Coordination. Angewandte Chemie 2021, 133 (35) , 19240-19244. https://doi.org/10.1002/ange.202104871OpenURL UNIV OF HOUSTON MAIN
  26. Roshan K. Dhungana, Vivek Aryal, Doleshwar Niroula, Rishi R. Sapkota, Margaret G. Lakomy, Ramesh Giri. Nickel‐Catalyzed Regioselective Alkenylarylation of γ,δ‐Alkenyl Ketones via Carbonyl Coordination. Angewandte Chemie International Edition 2021, 60 (35) , 19092-19096. https://doi.org/10.1002/anie.202104871OpenURL UNIV OF HOUSTON MAIN
  27. Lucie Finck, Martin Oestreich. Transition‐Metal‐Free Coupling of Polyfluorinated Arenes and Functionalized, Masked Aryl Nucleophiles. Chemistry – A European Journal 2021, 27 (43) , 11061-11064. https://doi.org/10.1002/chem.202101731OpenURL UNIV OF HOUSTON MAIN
  28. Italo A. Sanhueza, Felix J. R. Klauck, Erdem Senol, Sinead T. Keaveney, Theresa Sperger, Franziska Schoenebeck. Base‐Free Cross‐Couplings of Aryl Diazonium Salts in Methanol: Pd II –Alkoxy as Reactivity‐Controlling Intermediate. Angewandte Chemie 2021, 133 (13) , 7083-7088. https://doi.org/10.1002/ange.202014842OpenURL UNIV OF HOUSTON MAIN
  29. Italo A. Sanhueza, Felix J. R. Klauck, Erdem Senol, Sinead T. Keaveney, Theresa Sperger, Franziska Schoenebeck. Base‐Free Cross‐Couplings of Aryl Diazonium Salts in Methanol: Pd II –Alkoxy as Reactivity‐Controlling Intermediate. Angewandte Chemie International Edition 2021, 60 (13) , 7007-7012. https://doi.org/10.1002/anie.202014842OpenURL UNIV OF HOUSTON MAIN
  30. Chunxia Zhang, Dong Li, Yilong Zhao, Jinfeng Zhao, Jingping Qu, Yuhan Zhou. Base‐free Suzuki‐Miyaura Coupling of ( Z )‐Trifluoromethyl Alkenyltriflates: An Efficient Approach to α ‐Trifluoromethyl Arylenes. ChemistrySelect 2020, 5 (42) , 13099-13102. https://doi.org/10.1002/slct.202004030OpenURL UNIV OF HOUSTON MAIN
  31. M. R. Crampton. Aromatic Substitution. 2020,,, 213-295. https://doi.org/10.1002/9781119426295.ch5OpenURL UNIV OF HOUSTON MAIN
  32. Knut Tormodssønn Hylland, Sigurd Øien‐Ødegaard, Mats Tilset. The Suzuki–Miyaura Cross‐Coupling as the Key Step in the Synthesis of 2‐Aminobiphenyls and 2,2'‐Diaminobiphenyls: Application in the Synthesis of Schiff Base Complexes of Zn. European Journal of Organic Chemistry 2020, 2020 (27) , 4208-4226. https://doi.org/10.1002/ejoc.202000599OpenURL UNIV OF HOUSTON MAIN
  33. Kevin H. Shaughnessy. Monodentate Trialkylphosphines: Privileged Ligands in Metal-catalyzed Crosscoupling Reactions. Current Organic Chemistry 2020, 24 (3) , 231-264. https://doi.org/10.2174/1385272824666200211114540OpenURL UNIV OF HOUSTON MAIN
  34. Wengang Xu, Heming Jiang, Jing Leng, Han‐Wee Ong, Jie Wu. Visible‐Light‐Induced Selective Defluoroborylation of Polyfluoroarenes, gem ‐Difluoroalkenes, and Trifluoromethylalkenes. Angewandte Chemie International Edition 2020, 59 (10) , 4009-4016. https://doi.org/10.1002/anie.201911819OpenURL UNIV OF HOUSTON MAIN
  35. Wengang Xu, Heming Jiang, Jing Leng, Han‐Wee Ong, Jie Wu. Visible‐Light‐Induced Selective Defluoroborylation of Polyfluoroarenes, gem ‐Difluoroalkenes, and Trifluoromethylalkenes. Angewandte Chemie 2020, 132 (10) , 4038-4045. https://doi.org/10.1002/ange.201911819OpenURL UNIV OF HOUSTON MAIN
  36. Mark Jurrat, Lorenzo Maggi, William Lewis, Liam T. Ball. Modular bismacycles for the selective C–H arylation of phenols and naphthols. Nature Chemistry 2020, 12 (3) , 260-269. https://doi.org/10.1038/s41557-020-0425-4OpenURL UNIV OF HOUSTON MAIN
  37. Xiao-Yu Lu, Lu-Yu Yan, Jin-Song Li, Jia-Mei Li, Hai-pin Zhou, Run-Chuang Jiang, Chuang-Chuang Liu, Ran Lu, Rong Hu. Base-free Ni-catalyzed Suzuki-type cross-coupling reactions of epoxides with boronic acids. Chemical Communications 2020, 56 (1) , 109-112. https://doi.org/10.1039/C9CC08079AOpenURL UNIV OF HOUSTON MAIN
  38. Christoph Fricke, Grant J. Sherborne, Ignacio Funes‐Ardoiz, Erdem Senol, Sinem Guven, Franziska Schoenebeck. Orthogonal Nanoparticle Catalysis with Organogermanes. Angewandte Chemie 2019, 131 (49) , 17952-17959. https://doi.org/10.1002/ange.201910060OpenURL UNIV OF HOUSTON MAIN
  39. Christoph Fricke, Grant J. Sherborne, Ignacio Funes‐Ardoiz, Erdem Senol, Sinem Guven, Franziska Schoenebeck. Orthogonal Nanoparticle Catalysis with Organogermanes. Angewandte Chemie International Edition 2019, 58 (49) , 17788-17795. https://doi.org/10.1002/anie.201910060OpenURL UNIV OF HOUSTON MAIN
  40. Zhi-Tao He, John F. Hartwig. Palladium-catalyzed α-arylation for the addition of small rings to aromatic compounds. Nature Communications 2019, 10 (1) https://doi.org/10.1038/s41467-019-12090-zOpenURL UNIV OF HOUSTON MAIN
  41. Marco Paladino, Michele Boghi, Dennis G. Hall. Phenoxy-Dialkoxy Borates as a New Class of Readily Prepared Preactivated Reagents for Base-Free Cross-Coupling. European Journal of Organic Chemistry 2019, 2019 (38) , 6566-6570. https://doi.org/10.1002/ejoc.201900993OpenURL UNIV OF HOUSTON MAIN
  42. Surendra Thapa, Roshan K. Dhungana, Diane A. Dickie, Ramesh Giri. Isolation and characterization of (Ar)(F)B(OR)2Cs and (PN)CuAr complexes. Involvement of cationic copper(I) species during transmetalation of arylboron reagents with (PN)CuF. Tetrahedron 2019, 75 (31) , 4081-4085. https://doi.org/10.1016/j.tet.2019.05.071OpenURL UNIV OF HOUSTON MAIN
  43. Narayan Sinha, Pier Alexandre Champagne, Michael J. Rodriguez, Yu Lu, Michael E. Kopach, David Mitchell, Michael G. Organ. One‐Pot Sequential Kumada–Tamao–Corriu Couplings of (Hetero)Aryl Polyhalides in the Presence of Grignard‐Sensitive Functional Groups Using Pd‐PEPPSI‐IPent Cl. Chemistry – A European Journal 2019, 25 (26) , 6508-6512. https://doi.org/10.1002/chem.201901150OpenURL UNIV OF HOUSTON MAIN
  44. Irina P. Beletskaya, Francisco Alonso, Vladimir Tyurin. The Suzuki-Miyaura reaction after the Nobel prize. Coordination Chemistry Reviews 2019, 385 , 137-173. https://doi.org/10.1016/j.ccr.2019.01.012OpenURL UNIV OF HOUSTON MAIN
  45. François-Xavier Felpin, Saumitra Sengupta. Biaryl synthesis with arenediazonium salts: cross-coupling, CH-arylation and annulation reactions. Chemical Society Reviews 2019, 48 (4) , 1150-1193. https://doi.org/10.1039/C8CS00453FOpenURL UNIV OF HOUSTON MAIN
  46. Yan-Bing Wang, Yan-Xiao Liu, Zhi-Hui Zhu, Xue-Mei Zhao, Bing Song, Xinju Zhu, Xin-Qi Hao. Synthesis of achiral NCN pincer Pt(II) and Pd(II) complexes and catalytic application in the Suzuki-Miyaura reaction. Journal of Saudi Chemical Society 2019, 23 (1) , 104-110. https://doi.org/10.1016/j.jscs.2018.05.006OpenURL UNIV OF HOUSTON MAIN
  47. Christian A. Malapit, James R. Bour, Conor E. Brigham, Melanie S. Sanford. Base-free nickel-catalysed decarbonylative Suzuki–Miyaura coupling of acid fluorides. Nature 2018, 563 (7729) , 100-104. https://doi.org/10.1038/s41586-018-0628-7OpenURL UNIV OF HOUSTON MAIN
  48. W. Rush Scaggs, Thomas N. Snaddon. Enantioselective α-Allylation of Acyclic Esters Using B(pin)-Substituted Electrophiles: Independent Regulation of Stereocontrol Elements through Cooperative Pd/Lewis Base Catalysis. Chemistry - A European Journal 2018, 24 (54) , 14378-14381. https://doi.org/10.1002/chem.201803543OpenURL UNIV OF HOUSTON MAIN
  49. Thorsten Scherpf, Christopher Schwarz, Lennart T. Scharf, Jana-Alina Zur, Andreas Helbig, Viktoria H. Gessner. Ylide-Functionalized Phosphines: Strong Donor Ligands for Homogeneous Catalysis. Angewandte Chemie 2018, 130 (39) , 13041-13046. https://doi.org/10.1002/ange.201805372OpenURL UNIV OF HOUSTON MAIN
  50. Thorsten Scherpf, Christopher Schwarz, Lennart T. Scharf, Jana-Alina Zur, Andreas Helbig, Viktoria H. Gessner. Ylide-Functionalized Phosphines: Strong Donor Ligands for Homogeneous Catalysis. Angewandte Chemie International Edition 2018, 57 (39) , 12859-12864. https://doi.org/10.1002/anie.201805372OpenURL UNIV OF HOUSTON MAIN
  • Abstract

    Scheme 1

    Scheme 1. (a) Fluorine Effect on Protodeboronation and (b–c) Catalysis with Unstable Boronic Acids

    Scheme 2

    Scheme 2. Iterative, One-Pot Cationic Then Classic SMC

    Scheme 3

    Scheme 3. Synthesis of Unsaturated Organo-Pd Cationsa

    Scheme aThermal ellipsoids shown at 35% probability; H atoms omitted.

    Scheme 4

    Scheme 4. Stoichiometric Transmetalation Reactionsa

    Scheme aYields determined by 19F NMR versus 1,3,5-(CF3)3C6H3.

  • References

    ARTICLE SECTIONS
    Jump To

    This article references 32 other publications.

    1. 1
      Hall, D. G. Boronic Acids: Preparation and Applications in Organic Synthesis. Medicine and Materials; 2nd ed.; Wiley-VCH: Weinheim, 2011.
    2. 2
      (a) Cox, P. A.; Reid, M.; Leach, A. G.; Campbell, A. D.; King, E. J.; Lloyd-Jones, G. C. J. Am. Chem. Soc. 2017, in press, DOI:  DOI: 10.1021/jacs.7b07444 .
      (b) Cox, P. A.; Leach, A. G.; Campbell, A. D.; Lloyd-Jones, G. C. J. Am. Chem. Soc. 2016, 138, 9145 DOI: 10.1021/jacs.6b03283
      (c) Frohn, H. J.; Adonin, N. Y.; Bardin, V. V.; Starichenko, V. F. Z. Anorg. Allg. Chem. 2002, 628, 2834 DOI: 10.1002/1521-3749(200213)628:13<2834::AID-ZAAC2834>3.0.CO;2-2
      (d) Lozada, J.; Liu, Z.; Perrin, D. M. J. Org. Chem. 2014, 79, 5365 DOI: 10.1021/jo500734z
    3. 3

      For highly active Pd catalysts for SMC compatible with some polyfluoroaryl boronic acids, see:

      (a) Kinzel, T.; Zhang, Y.; Buchwald, S. L. J. Am. Chem. Soc. 2010, 132, 14073 DOI: 10.1021/ja1073799
      (b) Chen, L.; Ren, P.; Carrow, B. P. J. Am. Chem. Soc. 2016, 138, 6392 DOI: 10.1021/jacs.6b03215
    4. 4
      (a) Miyaura, N. J. Organomet. Chem. 2002, 653, 54 DOI: 10.1016/S0022-328X(02)01264-0
      (b) Lennox, A. J. J.; Lloyd-Jones, G. C. Angew. Chem., Int. Ed. 2013, 52, 7362 DOI: 10.1002/anie.201301737
      (c) Lennox, A.; Lloyd-Jones, G. New Trends in Cross-Coupling: Theory and Applications; The Royal Society of Chemistry: Cambridge, 2015; p 322.
    5. 5
      Suzuki, A. Angew. Chem., Int. Ed. 2011, 50, 6722 DOI: 10.1002/anie.201101379
    6. 6
      (a) Molander, G. A.; Ellis, N. Acc. Chem. Res. 2007, 40, 275 DOI: 10.1021/ar050199q
      (b) Knapp, D. M.; Gillis, E. P.; Burke, M. D. J. Am. Chem. Soc. 2009, 131, 6961 DOI: 10.1021/ja901416p
    7. 7
      (a) Gonzalez, J. A.; Ogba, O. M.; Morehouse, G. F.; Rosson, N.; Houk, K. N.; Leach, A. G.; Cheong, P. H. Y.; Burke, M. D.; Lloyd-Jones, G. C. Nat. Chem. 2016, 8, 1067 DOI: 10.1038/nchem.2571
      (b) Butters, M.; Harvey, J. N.; Jover, J.; Lennox, A. J. J.; Lloyd-Jones, G. C.; Murray, P. M. Angew. Chem., Int. Ed. 2010, 49, 5156 DOI: 10.1002/anie.201001522
    8. 8
      (a) Yang, Y.; Oldenhuis, N. J.; Buchwald, S. L. Angew. Chem., Int. Ed. 2013, 52, 615 DOI: 10.1002/anie.201207750
      (b) Shang, R.; Fu, Y.; Wang, Y.; Xu, Q.; Yu, H.-Z.; Liu, L. Angew. Chem., Int. Ed. 2009, 48, 9350 DOI: 10.1002/anie.200904916
      (c) Do, H.-Q.; Daugulis, O. J. Am. Chem. Soc. 2008, 130, 1128 DOI: 10.1021/ja077862l
      (d) Molander, G. A.; Biolatto, B. J. Org. Chem. 2003, 68, 4302 DOI: 10.1021/jo0342368
      (e) Kohlmann, J.; Braun, T.; Laubenstein, R.; Herrmann, R. Chem. - Eur. J. 2017, in press, DOI:  DOI: 10.1002/chem.201700549 .
    9. 9

      For related direct arylation reactions, see:

      Lafrance, M.; Rowley, C. N.; Woo, T. K.; Fagnou, K. J. Am. Chem. Soc. 2006, 128, 8754 DOI: 10.1021/ja062509l
    10. 10

      Stoichiometric Cu(I) can mediate transmetalation to Pd under neutral conditions:

      (a) Liebeskind, L. S.; Srogl, J. J. Am. Chem. Soc. 2000, 122, 11260 DOI: 10.1021/ja005613q
      (b) Savarin, C.; Liebeskind, L. S. Org. Lett. 2001, 3, 2149 DOI: 10.1021/ol010060p
      (c) Liebeskind, L. S.; Srogl, J. Org. Lett. 2002, 4, 979 DOI: 10.1021/ol0200091
      (d) Yu, Y.; Liebeskind, L. S. J. Org. Chem. 2004, 69, 3554 DOI: 10.1021/jo049964p
      (e) Crowley, B. M.; Potteiger, C. M.; Deng, J. Z.; Prier, C. K.; Paone, D. V.; Burgey, C. S. Tetrahedron Lett. 2011, 52, 5055 DOI: 10.1016/j.tetlet.2011.07.088
    11. 11
      (a) Korenaga, T.; Kosaki, T.; Fukumura, R.; Ema, T.; Sakai, T. Org. Lett. 2005, 7, 4915 DOI: 10.1021/ol051866i
      (b) Frohn, H. J.; Adonin, N. Y.; Bardin, V. V.; Starichenko, V. F. Tetrahedron Lett. 2002, 43, 8111 DOI: 10.1016/S0040-4039(02)01922-6
    12. 12
      (a) Jover, J.; Fey, N.; Purdie, M.; Lloyd-Jones, G. C.; Harvey, J. N. J. Mol. Catal. A: Chem. 2010, 324, 39 DOI: 10.1016/j.molcata.2010.02.021
      (b) Ariafard, A.; Lin, Z.; Fairlamb, I. J. S. Organometallics 2006, 25, 5788 DOI: 10.1021/om0607705
      (c) Ariafard, A.; Yates, B. F. J. Am. Chem. Soc. 2009, 131, 13981 DOI: 10.1021/ja9007134
    13. 13
      (a) Siegmann, K.; Pregosin, P. S.; Venanzi, L. M. Organometallics 1989, 8, 2659 DOI: 10.1021/om00113a023
      (b) Nishikata, T.; Yamamoto, Y.; Miyaura, N. Organometallics 2004, 23, 4317 DOI: 10.1021/om0498044
      (c) Holder, J. C.; Zou, L.; Marziale, A. N.; Liu, P.; Lan, Y.; Gatti, M.; Kikushima, K.; Houk, K. N.; Stoltz, B. M. J. Am. Chem. Soc. 2013, 135, 14996 DOI: 10.1021/ja401713g
      (d) Xu, L.; Hilton, M. J.; Zhang, X.; Norrby, P.-O.; Wu, Y.-D.; Sigman, M. S.; Wiest, O. J. Am. Chem. Soc. 2014, 136, 1960 DOI: 10.1021/ja4109616
    14. 14
      (a) Oger, N.; d’Halluin, M.; Le Grognec, E.; Felpin, F.-X. Org. Process Res. Dev. 2014, 18, 1786 DOI: 10.1021/op500299t
      (b) Roglans, A.; Pla-Quintana, A.; Moreno-Mañas, M. Chem. Rev. 2006, 106, 4622 DOI: 10.1021/cr0509861
      (c) Frohn, H.-J.; Adonin, N. Y.; Bardin, V. V.; Starichenko, V. F. J. Fluorine Chem. 2002, 117, 115 DOI: 10.1016/S0022-1139(02)00157-4
    15. 15
      Stambuli, J. P.; Incarvito, C. D.; Bühl, M.; Hartwig, J. F. J. Am. Chem. Soc. 2004, 126, 1184 DOI: 10.1021/ja037928m
    16. 16

      Negligible PDB side product (<5% C6F5H) was observed.

    17. 17

      Generation of stoichiometric acid byproduct is suggested by initial formation of basic biaryl products, such as 2, in their conjugate acid form.

    18. 18
      (a) Facchetti, A.; Yoon, M.-H.; Stern, C. L.; Katz, H. E.; Marks, T. J. Angew. Chem., Int. Ed. 2003, 42, 3900 DOI: 10.1002/anie.200351253
      (b) Tsuzuki, T.; Shirasawa, N.; Suzuki, T.; Tokito, S. Adv. Mater. 2003, 15, 1455 DOI: 10.1002/adma.200305034
      (c) Heidenhain, S. B.; Sakamoto, Y.; Suzuki, T.; Miura, A.; Fujikawa, H.; Mori, T.; Tokito, S.; Taga, Y. J. Am. Chem. Soc. 2000, 122, 10240 DOI: 10.1021/ja002309o
    19. 19
      Gates, D. P.; Svejda, S. A.; Oñate, E.; Killian, C. M.; Johnson, L. K.; White, P. S.; Brookhart, M. Macromolecules 2000, 33, 2320 DOI: 10.1021/ma991234+
    20. 20
      (a) Lee, J. C. H.; McDonald, R.; Hall, D. G. Nat. Chem. 2011, 3, 894 DOI: 10.1038/nchem.1150
      (b) Fyfe, J. W. B.; Fazakerley, N. J.; Watson, A. J. B. Angew. Chem., Int. Ed. 2017, 56, 1249 DOI: 10.1002/anie.201610797
    21. 21
      (a) Mlynarski, S. N.; Schuster, C. H.; Morken, J. P. Nature 2013, 505, 386 DOI: 10.1038/nature12781
      (b) Crudden, C. M.; Ziebenhaus, C.; Rygus, J. P. G.; Ghozati, K.; Unsworth, P. J.; Nambo, M.; Voth, S.; Hutchinson, M.; Laberge, V. S.; Maekawa, Y.; Imao, D. Nat. Commun. 2016, 7, 11065 DOI: 10.1038/ncomms11065
    22. 22

      Polyhaloarenes can also be used for site selective SMC:

      Wang, J.-R.; Manabe, K. Synthesis 2009, 2009, 1405 DOI: 10.1055/s-0029-1216632
    23. 23
      Velusamy, M.; Justin Thomas, K. R.; Lin, J. T.; Hsu, Y.-C.; Ho, K.-C. Org. Lett. 2005, 7, 1899 DOI: 10.1021/ol050417f
    24. 24
      (a) Ying, L.; Hsu, B. B. Y.; Zhan, H.; Welch, G. C.; Zalar, P.; Perez, L. A.; Kramer, E. J.; Nguyen, T.-Q.; Heeger, A. J.; Wong, W.-Y.; Bazan, G. C. J. Am. Chem. Soc. 2011, 133, 18538 DOI: 10.1021/ja207543g
      (b) Price, S. C.; Stuart, A. C.; Yang, L.; Zhou, H.; You, W. J. Am. Chem. Soc. 2011, 133, 4625 DOI: 10.1021/ja1112595
    25. 25
      Nishikata, T.; Abela, A. R.; Huang, S.; Lipshutz, B. H. Beilstein J. Org. Chem. 2016, 12, 1040 DOI: 10.3762/bjoc.12.99
    26. 26
      Walter, M. D.; White, P. S.; Brookhart, M. New J. Chem. 2013, 37, 1128 DOI: 10.1039/c3nj41145a
    27. 27
      Brown, J. M.; Hii, K. K. Angew. Chem., Int. Ed. Engl. 1996, 35, 657 DOI: 10.1002/anie.199606571
    28. 28
      Yamamoto, A.; Kayaki, Y.; Nagayama, K.; Shimizu, I. Synlett 2000, 925
    29. 29
      Osborn, J. A.; Schrock, R. R. J. Am. Chem. Soc. 1971, 93, 3089 DOI: 10.1021/ja00741a069
    30. 30

      4,4′-Difluorobiphenyl was the main organic byproduct.

    31. 31
      (a) Kayaki, Y.; Shimizu, I.; Yamamoto, A. Bull. Chem. Soc. Jpn. 1997, 70, 1135 DOI: 10.1246/bcsj.70.1135
      (b) Kawataka, F.; Shimizu, I.; Yamamoto, A. Bull. Chem. Soc. Jpn. 1995, 68, 654 DOI: 10.1246/bcsj.68.654
    32. 32
      Braga, A. A. C.; Morgon, N. H.; Ujaque, G.; Maseras, F. J. Am. Chem. Soc. 2005, 127, 9298 DOI: 10.1021/ja050583i
  • Supporting Information

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/jacs.7b07687.

    • Experimental procedures and spectral data for new compounds (PDF)

    • Crystallographic data (CIF)


    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

You’ve supercharged your research process with ACS and Mendeley!

STEP 1:
Click to create an ACS ID

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

MENDELEY PAIRING EXPIRED
Your Mendeley pairing has expired. Please reconnect

This website uses cookies to improve your user experience. By continuing to use the site, you are accepting our use of cookies. Read the ACS privacy policy.

CONTINUE