ACS Publications. Most Trusted. Most Cited. Most Read
CONTENT TYPES

Figure 1Loading Img

A Diverted Aerobic Heck Reaction Enables Selective 1,3-Diene and 1,3,5-Triene Synthesis through C–C Bond Scission

  • Neil J. McAlpine
    Neil J. McAlpine
    Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
  • Long Wang
    Long Wang
    Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
    More by Long Wang
  • , and 
  • Brad P. Carrow*
    Brad P. Carrow
    Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
    *[email protected]
Cite this: J. Am. Chem. Soc. 2018, 140, 42, 13634–13639
Publication Date (Web):October 5, 2018
https://doi.org/10.1021/jacs.8b10007
Copyright © 2018 American Chemical Society
Subscribed Access
Article Views
6332
Altmetric
-
Citations
LEARN ABOUT THESE METRICS
PDF (969 KB) OpenURL UNIV OF HOUSTON MAIN
Supporting Info (1)»

Abstract

Substituted 1,3-dienes are valuable synthetic intermediates used in myriad catalytic transformations, yet modern catalytic methods for their preparation in a highly modular fashion using simple precursors are relatively few. We report here an aerobic boron Heck reaction with cyclobutene that forms exclusively linear 1-aryl-1,3-dienes using (hetero)arylboronic acids, or 1,3,5-trienes using alkenylboronic acids, rather than typical Heck products (i.e., substituted cyclobutenes). Experimental and computational mechanistic data support a pericyclic mechanism for C–C bond cleavage that enables the cycloalkene to circumvent established limitations associated with diene reagents in Heck-type reactions.

Substituted 1,3-dienes are common synthetic building blocks featured in a wide array of complexity-building catalytic transformations, including recently developed asymmetric hydrofunctionalizations,(1) difunctionalizations,(2) C–H functionalizations,(3) cycloadditions,(4) and cross-coupling.(5) Preparations of 1,3-dienes, 1-aryl-1,3-dienes being a particularly prevalent subset in modern catalytic methods, classically involve disconnections at the central σ bond of the diene,(6) such as through Mizoroki–Heck reactions, cross-coupling,(7,8) and ene-yne metathesis,(9) or disconnection at the double bond in the case of Wittig-type olefinations (Scheme 1, left).(10) Drawbacks of these approaches include functional group compatibility with strongly basic organometallic reagents or, more importantly, limited structural diversity in commercial starting materials (i.e., styrenyl halides or cinnamaldehydes). The development of single-step catalytic routes to substituted 1,3-dienes thus remains highly desirable, particularly if diverse and widely available building blocks, such as boronic acids, could be used as substrates.(11) We report here a mild Pd-catalyzed aerobic coupling of (hetero)arylboronic acids or alkenylboronic acids with cyclobutene to generate substituted 1,3-dienes or 1,3,5-trienes, respectively, in a regio- and stereoselective fashion.

Scheme 1

Scheme 1. Representative Routes to 1-Aryl-1,3-dienes

The focus on cyclobutene in this work was deliberate because direct synthesis of 1-aryl-1,3-dienes by arylation of butadiene suffers several established mechanistic limitations. The Pd-catalyzed reaction of aryl halides with butadiene (Scheme 1, upper right) was reported to occur in poor yields with competing formation of 1,4-diaryl-1,3-diene side products. Heck suggested this occurs because the immediate product (1-aryl-1,3-diene) is more reactive than butadiene in subsequent catalytic turnovers.(12) Another problem occurs immediately following migratory insertion of butadiene, which forms a stabilized (π-allyl)Pd intermediate that is reluctant to release diene by β-H elimination (Scheme 2).(13)

Scheme 2

Scheme 2. Evolution of Intermediates Following Insertion of Butadiene or Related Alkenes

The kinetic problems noted above could potentially be avoided by the use of a butadiene surrogate. Rupture of strained rings by β-alkyl elimination(14) has been observed following migratory insertion of methylenecycloalkanes, which could provide an alternative path to diene formation (Scheme 2, top). While Larock did observe such β-alkyl elimination during reactions of anionic palladate complexes, facile “chain walking”(15) also occurred that shuttled Pd back to the thermodynamically most stable intermediate—a π-allyl complex.(16) A ring opening reaction of cycloalkenes might nevertheless be a viable pathway to substituted dienes if chain walking could be suppressed.

We hypothesized that electrophilic, rather than the electron-rich Pd complexes previously studied, could offer a potential solution because the former has been shown to form kinetic product distributions (i.e., no chain-walking) during oxidative Heck reactions.(17,18) An electrophilic organo-Pd intermediate might then react with cyclobutene by either of two conceivable pathways for C–C cleavage (Scheme 2, bottom) to form 1-substituted 1,3-dienes without leading to (π-allyl)Pd intermediates. We thus studied the boron Heck reaction to test this idea.

An optimization campaign identified suitable conditions for the aerobic reaction of phenylboronic acid with cyclobutene in the presence of Pd(OAc)2. In the best case using 5 mol % Pd with added acetic acid and water, a near-quantitative yield (99%) of trans-1-phenyl-1,3-butadiene (1) was generated after 72 h at 45 °C (Table 1). The absence of detectable quantities of the typical Heck product (3-phenylcyclobutene) or 1,4-diphenyl-1,3-butadiene indicates surprisingly high selectivity in this catalytic process. Additionally, the absence of 2-phenyl-1,3-butadiene highlights the complementary regioselectivity compared to (neocuproine)Pd-catalyzed aerobic Heck reactions developed by Stahl that favor branched products.(19) Substitution of butadiene for cyclobutene led to complete suppression of reactivity (entry 1), which is consistent with the hypothesis that reaction pathways leading to (π-allyl)Pd intermediates are detrimental to catalysis. The use of lower O2 pressure in a balloon (14 psig) also generated 69% of 1, which should be attractive for applications without pressure equipment (entry 2). The use of 10% O2 in N2 mixture, close to the limiting oxygen concentration of 2-methyltetrahydrofuran (2-MeTHF),(20) also produced 1 in 80% yield at the same oxygen partial pressure as the standard conditions (entry 3).

Table 1. Aerobic Boron Heck Reaction with Cyclobutenea
entrydeviation from the standard conditionsyield 1 (%)b
1butadiene instead of cyclobutene0
2O2 balloon (14 psig)69
3c10% O2, balance N2 (500 psig)80
4PhBPin instead of PhB(OH)283
5PhBF3K instead of PhB(OH)279
61 mol % Pd43
71 mol % Pd, 96 h90
8omit BQ84
9omit AcOH72
10omit H2O43
11omit AcOH and H2O31
12omit Pd0
a

Conditions: boronic acid (0.25 mmol, 0.2 M), cyclobutene (2.7 equiv), AcOH (4 equiv), H2O (10 equiv), Pd(OAc)2, BQ, and BHT inhibitor (1000 ppm) in 2-MeTHF at 45 °C under O2 (50 psig).

b

Yield determined by NMR versus Bn2O as standard. Pin = pinacolato.

c

After additional heating at 75 °C for 6 h.

Several alternative boron reagents were also effective nucleophiles in the model reaction, such as the pinacol ester or trifluoroborate analogues of phenylboronic acid (entries 4 and 5), producing 1 in 83% and 79% yield, respectively. The inclusion of a radical inhibitor, butylated hydroxytoluene (BHT), was important in all cases for stabilizing the 1,3-diene products under the aerobic conditions. A high yield of 1 (90%) is still possible with a 5-fold reduction in catalyst loading with increased time (entries 6 and 7). Catalytic p-benzoquinone (BQ) enhances the yield of 1 but is not required for aerobic turnover (entry 8). The importance of added water and acetic acid on product yield is more pronounced (entries 9–11), which we speculate could promote transmetalation(21) and/or catalyst turnover from a [Pd]–H or Pd0 species.(22) The use of an industrially preferred solvent (2-MeTHF),(23) molecular oxygen as the terminal oxidant, and the generation of benign byproducts (e.g., boric acid and water) are several attractive features of this method. Organoboron reagents also complement the substrates used in existing methods to prepare dienes and trienes, such as aldehydes(10,11) or haloarenes,(11b) while also avoiding the need for harsh oxidants or bases.

We next examined a series of other (hetero)arylboronic acids to establish the generality of this transformation. 1-Aryl-1,3-dienes derived from arylboronic acids with para- or meta-withdrawing substituents (2, 6, 8, 9, and 1113) formed in good isolated yield (56%–91%). Arylboronic acids with electron-releasing substituents (35) were obtained in slightly reduced yet reasonable yields (60%–79%). The compatibility of the catalyst with free phenol, carboxylic acid, Weinreb’s amide, and coordinating thioether functional groups is very good. Reactions with 3-benzothienyl, 3-(2-fluoro)pyridyl, and 3-(2,6-difluoro)pyridyl boronic acids also generated 1-heteroaryl-1,3-dienes 1416 in reasonable isolated yields (57%–62%). The fluoropyridine units in 15 and 16 are notable for their utility in medicinal chemistry for further elaboration by SNAr reactions.

We found the standard conditions used for arylboronic acid coupling with cyclobutene are also directly applicable to alkenylboronic acids (Table 2), which extend the π-conjugation of the products. Competing 6π-electrocyclization was not observed, which allowed the formation of a range of substituted 1,3,5-trienes by this diverted aerobic Heck reaction. Formation of cyclohexyl- (17), tert-butyl- (18), and chloropropyl- (19) substituted (1E,3E)-1,3,5-trienes occurred in good isolated yields (63%–72%) and as the only detectable stereoisomer. Alternatively, the use of a Z-alkenylboronic acid generated the 1Z-configured triene product 20 stereospecifically. Finally, a range of trans-styrenylboronic acids generated (1E,3E)-1-aryl-1,3,5-trienes 2126 in 44%–75% isolated yields. Preliminary attempts using alkylboronic acids (e.g., Me, Bu, i-Pr, c-Pr) were not successful under the standard conditions.

Table 2. Applicable (Hetero)Aryl and Alkenyl Boronic Acids to Aerobic Heck Reaction with Cyclobutenea
a

Isolated yields shown. Conditions: boronic acid (0.25 mmol, 0.2 M), cyclobutene (2.7 equiv), AcOH (4 equiv), H2O (10 equiv), Pd(OAc)2, BQ, and BHT inhibitor (1000 ppm) in 2-MeTHF at 45 °C under O2 (50 psig).

b

>20:1 E:Z in all cases.

c

After additional heating at 75 °C for 6 h.

d

Geometric isomer indicated for each triene was the only detectable isomer, unless noted otherwise.

e

BPin reagent used.

f

(1E,3E)/(1Z,3E); isomerization occurred during isolation.

We conducted DFT calculations to establish a mechanistic rationalization for the formation of linear 1,3-dienes rather than branched isomers (e.g., 2-aryl-1,3-dienes) or normal Heck products (e.g., 3-arylcyclbutenes), the results of which are summarized in Figure 1. The phenyl-Pd species formed by transmetalation of PhB(OH)2 to Pd(II) initially forms 27 upon coordination of cyclobutene. Migratory insertion through a Cossee–Arlman mechanism (TS28) generates a cyclobutyl-Pd intermediate 29. This insertion reaction is more exoergic (−11 kcal/mol) than typical insertions of acyclic alkenes,(24) which reflects a conformationally enforced, stabilizing η2-arene interaction. Other plausible cyclobutyl-Pd species with alternative coordination modes of the acetate or 2-phenylcyclobutyl ligands were also evaluated (Figure S3), but these were less stable than 29 by 5.4–15.0 kcal/mol because the planar κ2-OAc in 29 minimizes steric interactions with the Ph group. Two postulated reactions pathways bifurcate from this point.

Figure 1

Figure 1. Potential energies of key steps in putative reaction pathways to 1-aryl-1,3-diene products involving C–C cleavage by either a (a) β-alkyl elimination or (b) pericyclic mechanism. Geometry optimizations were carried out at the B3LYP/LANL2DZ-6-31-G(d) and solvation corrections at the M06/SDD-6-311+G(d,p)/SMD(THF) level of theory.

One pathway to diene 1 from cyclobutyl-Pd complex 29 would proceed by C–C bond scission through β-C elimination, an elementary reaction that has ample precedent among the group 10 metals.(16,25) Cleavage of the Cα–Cβ′ or Cβ′–Cγ cyclobutyl bond by this mechanism would generate new alkyl-Pd intermediates 31 or 32, respectively (Figure 1a). Formation of complex 31 is calculated to be exoergic by 14 kcal/mol and occurs through a lower energy transition state (TS30lin) than the competing pathway toward the branched diene (TS30br), possibly due to more favorable benzylic stabilization.(26) Product 1 is then formed by β-H elimination from 31 (not shown).

An alternative pathway that could advance the common intermediate 29 to diene 1 could occur initially by formation of a [Pd]–H species (33) through β-H elimination followed by reinsertion with the opposite regioselectivity to generate a new symmetric cyclobutyl-Pd intermediate 34 (Figure 1a). While β-C elimination from 34 could only lead to the linear diene product, which could rationalize the experimentally observed selectivity, TS35 involving Cα–Cβ scission is calculated to proceed with a higher barrier than the alternative β-C elimination pathways. These mechanisms thus do not adequately account for the exclusive linear selectivity for formation of 1 over 2-phenyl-1,3-butadiene given the calculated ΔΔG of ca. 1 kcal/mol between linear and branched product formation.

Another pathway to diene formation could begin from the intermediate 33 formed after β-H elimination (Figure 1b). Exchange of coordinated 3-phenylcyclobutene (37) for BQ occurs with a barrier of 32 kcal/mol by a dissociative mechanism. While associative mechanisms for release of product 37 might occur with lower barriers, the fact that the dissociative mechanism is lower in energy than TS30lin in the β-C elimination pathway is nonetheless informative. Subsequent BQ-promoted H–OAc reductive elimination to form Pd(0) is strongly exoergic and renders the process irreversible. Other pathways for oxidative turnover of Pd by O2 or BQ are possible but were not considered here.(22,27) Linear product 1 can then be formed from free 37 by 4π-electrocyclic ring opening, which is calculated to occur with a considerable energy barrier (ΔG = 29 kcal/mol).(28) This significant barrier to product formation suggests 37 could accumulate during the course of the catalytic reaction. To test this, we conducted a reaction with phenylboronic acid using a low pressure of O2 (14 psig) that facilitated periodic sampling for 1H NMR analysis. A kinetic profile generated from these data (Figure S2) indeed revealed early accumulation of intermediate 37, which peaks after ca. 12 h (92%). Product 1 grows in more slowly over 72 h to a final yield of 69%. With consideration of these computational and experimental mechanistic data, we conclude that the most likely reaction pathway involves an initial Heck process to generate a 3-substituted cyclobutene followed by pericyclic ring opening to reveal the final diene or triene product. Control of alkene geometry would be expected by this mechanism because C–C cleavage would be stereospecific through a pericyclic process. The high regioselectivity can also be rationalized because the Pd-catalyzed reaction can only form 3-substituted cyclobutenes by stereospecific syn-migratory insertion and syn-β-H elimination in the absence of chain walking.

In summary, a mild and modular route to synthetically versatile 1-aryl-1,3-dienes and substituted 1,3,5-trienes has been developed. The normal, aerobic Heck reaction in these cases diverts through a pathway involving C–C bond scission by pericyclic ring opening. This mechanism allows cyclobutene to function as a masked form of butadiene thereby circumventing mechanistic liabilities associated with the latter in Heck-type reactions. The reported method complements disconnections in classic synthetic routes to 1,3-dienes, such as by Wittig olefination or Pd-catalyzed cross-coupling, and also benefits from the wide availability of commercial organoboron reagents. The applicability of other nucleophiles and cycloalkenes to this reaction manifold will be the focus of future efforts.

Supporting Information

ARTICLE SECTIONS
Jump To

The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/jacs.8b10007.

  • Experimental procedures, computational data, and characterization and spectral data for new compounds (PDF)

Terms & Conditions

Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

Author Information

ARTICLE SECTIONS
Jump To

  • Corresponding Author
  • Authors
    • Neil J. McAlpine - Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
    • Long Wang - Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
  • Notes
    The authors declare no competing financial interest.

Acknowledgments

ARTICLE SECTIONS
Jump To

Financial support was provided by Princeton University and NIH R35GM128902.

References

ARTICLE SECTIONS
Jump To

This article references 28 other publications.

  1. 1
    (a) Goldfogel, M. J.; Roberts, C. C.; Meek, S. J. Intermolecular Hydroamination of 1,3-Dienes Catalyzed by Bis(phosphine)carbodicarbene–Rhodium Complexes. J. Am. Chem. Soc. 2014, 136, 62276230,  DOI: 10.1021/ja502275w .
    (b) Saini, V.; O’Dair, M.; Sigman, M. S. Synthesis of Highly Functionalized Tri- and Tetrasubstituted Alkenes via Pd-Catalyzed 1,2-Hydrovinylation of Terminal 1,3-Dienes. J. Am. Chem. Soc. 2015, 137, 608611,  DOI: 10.1021/ja511640g .
    (c) Roberts, C. C.; Matías, D. M.; Goldfogel, M. J.; Meek, S. J. Lewis Acid Activation of Carbodicarbene Catalysts for Rh-Catalyzed Hydroarylation of Dienes. J. Am. Chem. Soc. 2015, 137, 64886491,  DOI: 10.1021/jacs.5b03510 .
    (d) Thullen, S. M.; Rovis, T. A Mild Hydroaminoalkylation of Conjugated Dienes Using a Unified Cobalt and Photoredox Catalytic System. J. Am. Chem. Soc. 2017, 139, 1550415508,  DOI: 10.1021/jacs.7b09252 .
    (e) Yang, X. H.; Dong, V. M. Rhodium-Catalyzed Hydrofunctionalization: Enantioselective Coupling of Indolines and 1,3-Dienes. J. Am. Chem. Soc. 2017, 139, 17741777,  DOI: 10.1021/jacs.6b12307 .
    (f) Adamson, N. J.; Hull, E.; Malcolmson, S. J. Enantioselective Intermolecular Addition of Aliphatic Amines to Acyclic Dienes with a Pd-PHOX Catalyst. J. Am. Chem. Soc. 2017, 139, 71807183,  DOI: 10.1021/jacs.7b03480 .
    (g) Gu, L.; Wolf, L. M.; Zielinski, A.; Thiel, W.; Alcarazo, M. alpha-Dicationic Chelating Phosphines: Synthesis and Application to the Hydroarylation of Dienes. J. Am. Chem. Soc. 2017, 139, 49484953,  DOI: 10.1021/jacs.7b01441 .
    (h) Gui, Y.-Y.; Hu, N.; Chen, X.-W.; Liao, L. L.; Ju, T.; Ye, J.-H.; Zhang, Z.; Li, J.; Yu, D.-G. Highly Regio- and Enantioselective Copper-Catalyzed Reductive Hydroxymethylation of Styrenes and 1,3-Dienes with CO2. J. Am. Chem. Soc. 2017, 139, 1701117014,  DOI: 10.1021/jacs.7b10149 .
    (i) Marcum, J. S.; Roberts, C. C.; Manan, R. S.; Cervarich, T. N.; Meek, S. J. Chiral Pincer Carbodicarbene Ligands for Enantioselective Rhodium-Catalyzed Hydroarylation of Terminal and Internal 1,3-Dienes with Indoles. J. Am. Chem. Soc. 2017, 139, 1558015583,  DOI: 10.1021/jacs.7b08575 .
    (j) Adamson, N. J.; Wilbur, K. C. E.; Malcolmson, S. J. Enantioselective Intermolecular Pd-Catalyzed Hydroalkylation of Acyclic 1,3-Dienes with Activated Pronucleophiles. J. Am. Chem. Soc. 2018, 140, 27612764,  DOI: 10.1021/jacs.7b13300
  2. 2
    (a) Bar, G. L. J.; Lloyd-Jones, G. C.; Booker-Milburn, K. I. Pd(II)-Catalyzed Intermolecular 1,2-Diamination of Conjugated Dienes. J. Am. Chem. Soc. 2005, 127, 73087309,  DOI: 10.1021/ja051181d .
    (b) Du, H.; Yuan, W.; Zhao, B.; Shi, Y. Catalytic Asymmetric Diamination of Conjugated Dienes and Triene. J. Am. Chem. Soc. 2007, 129, 1168811689,  DOI: 10.1021/ja074698t .
    (c) Liao, L.; Jana, R.; Urkalan, K. B.; Sigman, M. S. A Palladium-Catalyzed Three-Component Cross-Coupling of Conjugated Dienes or Terminal Alkenes with Vinyl Triflates and Boronic Acids. J. Am. Chem. Soc. 2011, 133, 57845787,  DOI: 10.1021/ja201358b .
    (d) Wu, X.; Lin, H.-C.; Li, M.-L.; Li, L.-L.; Han, Z.-Y.; Gong, L.-Z. Enantioselective 1,2-Difunctionalization of Dienes Enabled by Chiral Palladium Complex-Catalyzed Cascade Arylation/Allylic Alkylation Reaction. J. Am. Chem. Soc. 2015, 137, 1347613479,  DOI: 10.1021/jacs.5b08734 .
    (e) Liu, Y.; Xie, Y.; Wang, H.; Huang, H. Enantioselective Aminomethylamination of Conjugated Dienes with Aminals Enabled by Chiral Palladium Complex-Catalyzed C–N Bond Activation. J. Am. Chem. Soc. 2016, 138, 43144317,  DOI: 10.1021/jacs.6b00976 .
    (f) Sardini, S. R.; Brown, M. K. Catalyst Controlled Regiodivergent Arylboration of Dienes. J. Am. Chem. Soc. 2017, 139, 98239826,  DOI: 10.1021/jacs.7b05477 .
    (g) Huang, Y.; Smith, K. B.; Brown, M. K. Copper-Catalyzed Borylacylation of Activated Alkenes with Acid Chlorides. Angew. Chem., Int. Ed. 2017, 56, 1331413318,  DOI: 10.1002/anie.201707323
  3. 3
    (a) Liao, L.; Guo, R.; Zhao, X. Organoselenium-Catalyzed Regioselective C-H Pyridination of 1,3-Dienes and Alkenes. Angew. Chem., Int. Ed. 2017, 56, 32013205,  DOI: 10.1002/anie.201610657 .
    (b) Bai, L.; Wang, Y.; Ge, Y.; Liu, J.; Luan, X. Diastereoselective Synthesis of Dibenzo[b,d]azepines by Pd(II)-Catalyzed [5 + 2] Annulation of o-Arylanilines with Dienes. Org. Lett. 2017, 19, 17341737,  DOI: 10.1021/acs.orglett.7b00503 .
    (c) Chen, S. S.; Wu, M. S.; Han, Z. Y. Palladium-Catalyzed Cascade sp(2) C-H Functionalization/Intramolecular Asymmetric Allylation: From Aryl Ureas and 1,3-Dienes to Chiral Indolines. Angew. Chem., Int. Ed. 2017, 56, 66416645,  DOI: 10.1002/anie.201702745
  4. 4
    (a) Hoyt, J. M.; Schmidt, V. A.; Tondreau, A. M.; Chirik, P. J. Iron-catalyzed intermolecular [2 + 2] cycloadditions of unactivated alkenes. Science 2015, 349, 960963,  DOI: 10.1126/science.aac7440 .
    (b) Kim, H.; Kim, S.; Kim, J.; Son, J. Y.; Baek, Y.; Um, K.; Lee, P. H. One-Pot Synthesis of Indolizines via Sequential Rhodium-Catalyzed [2 + 1]-Cyclopropanation, Palladium-Catalyzed Ring Expansion, and Oxidation Reactions from Pyridotriazoles and 1,3-Dienes. Org. Lett. 2017, 19, 56775680,  DOI: 10.1021/acs.orglett.7b02826 .
    (c) Lang, B.; Zhu, H.; Wang, C.; Lu, P.; Wang, Y. Rhodium-Catalyzed Cycloadditions between 3-Diazoindolin-2-imines and 1,3-Dienes. Org. Lett. 2017, 19, 16301633,  DOI: 10.1021/acs.orglett.7b00438 .
    (d) Kim, S.; Kim, H.; Um, K.; Lee, P. H. Synthesis of Azepinoindoles via Rhodium-Catalyzed Formal Aza-[4 + 3] Cycloaddition Reaction of 3-Diazoindolin-2-imines with 1,3-Dienes in One-Pot. J. Org. Chem. 2017, 82, 98089815,  DOI: 10.1021/acs.joc.7b01150
  5. 5
    (a) Sargent, B. T.; Alexanian, E. J. Cobalt-Catalyzed Carbonylative Cross-Coupling of Alkyl Tosylates and Dienes: Stereospecific Synthesis of Dienones at Low Pressure. J. Am. Chem. Soc. 2017, 139, 1243812440,  DOI: 10.1021/jacs.7b07983 .
    (b) Shen, H.-C.; Wang, P.-S.; Tao, Z.-L.; Han, Z.-Y.; Gong, L.-Z. An Enantioselective Multicomponent Carbonyl Allylation of Aldehydes with Dienes and Alkynyl Bromides Enabled by Chiral Palladium Phosphate. Adv. Synth. Catal. 2017, 359, 23832389,  DOI: 10.1002/adsc.201700621
  6. 6
    (a) De Paolis, M.; Chataigner, I.; Maddaluno, J. Recent Advances in Stereoselective Synthesis of 1,3-Dienes. In Stereoselective Alkene Synthesis; Wang, J., Ed.; Springer Berlin Heidelberg: Berlin, Heidelberg, 2012; pp 87146.
    (b) Mehta, G.; Rao, H. S. Synthesis of Conjugated Dienes and Polyenes. In The Chemistry of Dienes and Polyenes; Rappoport, Z., Ed.; Wiley: New York, 1997; Vol. 1, pp 359480.
    (c) Vasil’ev, A. A.; Serebryakov, E. P. Synthetic methodologies for carbo-substituted conjugated dienes. Russ. Chem. Rev. 2001, 70, 735776,  DOI: 10.1070/RC2001v070n09ABEH000683
  7. 7
    (a) Yamashita, M.; Hirano, K.; Satoh, T.; Miura, M. Synthesis of α,ω-Diarylbutadienes and -Hexatrienes via Decarboxylative Coupling of Cinnamic Acids with Vinyl Bromides under Palladium Catalysis. Org. Lett. 2010, 12, 592595,  DOI: 10.1021/ol9027896 .
    (b) Wang, G.; Mohan, S.; Negishi, E.-i. Highly selective synthesis of conjugated dienoic and trienoic esters via alkyne elementometalation–Pd-catalyzed cross-coupling. Proc. Natl. Acad. Sci. U. S. A. 2011, 108, 1134411349,  DOI: 10.1073/pnas.1105155108 .
    (c) Molloy, J. J.; Seath, C. P.; West, M. J.; McLaughlin, C.; Fazakerley, N. J.; Kennedy, A. R.; Nelson, D. J.; Watson, A. J. B. Interrogating Pd(II) Anion Metathesis Using a Bifunctional Chemical Probe: A Transmetalation Switch. J. Am. Chem. Soc. 2018, 140, 126130,  DOI: 10.1021/jacs.7b11180
  8. 8
    Olivares, A. M.; Weix, D. J. Multimetallic Ni- and Pd-Catalyzed Cross-Electrophile Coupling To Form Highly Substituted 1,3-Dienes. J. Am. Chem. Soc. 2018, 140, 24462449,  DOI: 10.1021/jacs.7b13601
  9. 9
    Diver, S. T.; Giessert, A. J. Enyne Metathesis (Enyne Bond Reorganization). Chem. Rev. 2004, 104, 13171382,  DOI: 10.1021/cr020009e
  10. 10
    (a) Barluenga, J.; Rodríguez, F.; Álvarez-Rodrigo, L.; Fañanás, F. J. Zirconium-Mediated Cross-Coupling of Terminal Alkynes and Vinyl Bromides: Selective Synthesis of Cyclobutene and 1,3-Diene Derivatives. Chem. - Eur. J. 2004, 10, 101108,  DOI: 10.1002/chem.200305337 .
    (b) Zhu, L.; Wehmeyer, R. M.; Rieke, R. D. The direct formation of functionalized alkyl(aryl)zinc halides by oxidative addition of highly reactive zinc with organic halides and their reactions with acid chlorides, .alpha.,.beta.-unsaturated ketones, and allylic, aryl, and vinyl halides. J. Org. Chem. 1991, 56, 14451453,  DOI: 10.1021/jo00004a021 .
    (c) Chatterjee, T.; Dey, R.; Ranu, B. C. An easy access to styrenes: trans aryl 1,3-, 1,4- and 1,5-dienes, and 1,3,5-trienes by Hiyama cross-coupling catalyzed by palladium nanoparticles. New J. Chem. 2011, 35, 11031110,  DOI: 10.1039/c0nj01019g .
    (d) Hatanaka, Y.; Hiyama, T. Cross-coupling of organosilanes with organic halides mediated by a palladium catalyst and tris(diethylamino)sulfonium difluorotrimethylsilicate. J. Org. Chem. 1988, 53, 918920,  DOI: 10.1021/jo00239a056 .
    (e) Alacid, E.; Nájera, C. Aqueous Sodium Hydroxide Promoted Cross-Coupling Reactions of Alkenyltrialkoxysilanes under Ligand-Free Conditions. J. Org. Chem. 2008, 73, 23152322,  DOI: 10.1021/jo702570q .
    (f) Lu, G.-p.; Voigtritter, K. R.; Cai, C.; Lipshutz, B. H. Ligand effects on the stereochemistry of Stille couplings, as manifested in reactions of Z-alkenyl halides. Chem. Commun. 2012, 48, 86618663,  DOI: 10.1039/c2cc33294a .
    (g) Stille, J. K.; Groh, B. L. Stereospecific cross-coupling of vinyl halides with vinyl tin reagents catalyzed by palladium. J. Am. Chem. Soc. 1987, 109, 813817,  DOI: 10.1021/ja00237a029 .
    (h) Krasovskiy, A. L.; Haley, S.; Voigtritter, K.; Lipshutz, B. H. Stereoretentive Pd-Catalyzed Kumada–Corriu Couplings of Alkenyl Halides at Room Temperature. Org. Lett. 2014, 16, 40664069,  DOI: 10.1021/ol501535w .
    (i) Molander, G. A.; Rivero, M. R. Suzuki Cross-Coupling Reactions of Potassium Alkenyltrifluoroborates. Org. Lett. 2002, 4, 107109,  DOI: 10.1021/ol0169729 .
    (j) Szudkowska-Fra̧tczak, J.; Ryba, A.; Franczyk, A.; Walkowiak, J.; Kubicki, M.; Pawluć, P. A highly selective synthesis of 1-substituted (E)-buta-1,3-dienes with 4,4,5,5-tetramethyl-2-vinyl-1,3,2-dioxaborolane as building block. Appl. Organomet. Chem. 2014, 28, 137139,  DOI: 10.1002/aoc.3095
  11. 11
    (a) Mundal, D. A.; Lutz, K. E.; Thomson, R. J. Stereoselective Synthesis of Dienes from N-Allylhydrazones. Org. Lett. 2009, 11, 465468,  DOI: 10.1021/ol802585r .
    (b) Nguyen, V. T.; Dang, H. T.; Pham, H. H.; Nguyen, V. D.; Flores-Hansen, C.; Arman, H. D.; Larionov, O. V. Highly Regio- and Stereoselective Catalytic Synthesis of Conjugated Dienes and Polyenes. J. Am. Chem. Soc. 2018, 140, 84348438,  DOI: 10.1021/jacs.8b05421
  12. 12
    Mitsudo, T.; Fischetti, W.; Heck, R. F. Palladium-catalyzed syntheses of aryl polyenes. J. Org. Chem. 1984, 49, 16401646,  DOI: 10.1021/jo00183a029
  13. 13
    Jeffery, T. Palladium-catalysed Arylation of 1,3-Dienes: A Highly Chemo, Regio and Stereoselective Synthesis of (E,E) Conjugated Dienic Aromatics. Tetrahedron Lett. 1992, 33, 19891992,  DOI: 10.1016/0040-4039(92)88121-K
  14. 14
    O’Reilly, M. E.; Dutta, S.; Veige, A. S. β-Alkyl Elimination: Fundamental Principles and Some Applications. Chem. Rev. 2016, 116, 81058145,  DOI: 10.1021/acs.chemrev.6b00054
  15. 15
    Shultz, L. H.; Brookhart, M. Measurement of the Barrier to Beta-Hydride Elimination in Beta-Agostic Palladium-Ethyl Complex: A Model for the Energetics of Chain-Walking in (Alpha-Diimine)PdR+ Olefin Polymerization Catalysts. Organometallics 2001, 20, 3975,  DOI: 10.1021/om010197j
  16. 16
    Larock, R. C.; Varaprath, S. Mercury in Organic Chemistry. 30. Synthesis of (π-Allyl)Palladium Compounds Via Organopalladium Additions to Alkenyl- and Methylenecyclopropanes and Alkenyl- and Methylenecyclobutanes. J. Org. Chem. 1984, 49, 3432,  DOI: 10.1021/jo00192a053
  17. 17
    (a) Werner, E. W.; Sigman, M. S. A Highly Selective and General Palladium Catalyst for the Oxidative Heck Reaction of Electronically Nonbiased Olefins. J. Am. Chem. Soc. 2010, 132, 1398113983,  DOI: 10.1021/ja1060998 .
    (b) Delcamp, J. H.; Brucks, A. P.; White, M. C. A General and Highly Selective Chelate-Controlled Intermolecular Oxidative Heck Reaction. J. Am. Chem. Soc. 2008, 130, 1127011271,  DOI: 10.1021/ja804120r .
    (c) Su, Y.; Jiao, N. Control of Chemo-, Regio-, and Stereoselectivities in Ligand-Free Pd-Catalyzed Oxidative Heck Reactions of Arylboronic Acids or Alkenylboronate with Allyl Esters. Org. Lett. 2009, 11, 29802983,  DOI: 10.1021/ol9009865
  18. 18
    (a) Karimi, B.; Behzadnia, H.; Elhamifar, D.; Akhavan, P. F.; Esfahani, F. K.; Zamani, A. Transition-Metal-Catalyzed Oxidative Heck Reactions. Synthesis 2010, 2010, 13991427,  DOI: 10.1055/s-0029-1218748 .
    (b) Lee, A. L. Enantioselective oxidative boron Heck reactions. Org. Biomol. Chem. 2016, 14, 53575366,  DOI: 10.1039/C5OB01984B
  19. 19
    Zheng, C.; Wang, D.; Stahl, S. S. Catalyst-Controlled Regioselectivity in the Synthesis of Branched Conjugated Dienes via Aerobic Oxidative Heck Reactions. J. Am. Chem. Soc. 2012, 134, 1649616499,  DOI: 10.1021/ja307371w
  20. 20
    Osterberg, P. M.; Niemeier, J. K.; Welch, C. J.; Hawkins, J. M.; Martinelli, J. R.; Johnson, T. E.; Root, T. W.; Stahl, S. S. Experimental Limiting Oxygen Concentrations for Nine Organic Solvents at Temperatures and Pressures Relevant to Aerobic Oxidations in the Pharmaceutical Industry. Org. Process Res. Dev. 2015, 19, 15371543,  DOI: 10.1021/op500328f
  21. 21
    Siegmann, K.; Pregosin, P. S.; Venanzi, L. M. Reaction of organoboron compounds with platinum(II) disolvento complexes. Organometallics 1989, 8, 26592664,  DOI: 10.1021/om00113a023
  22. 22
    (a) Konnick, M. M.; Gandhi, B. A.; Guzei, I. A.; Stahl, S. S. Reaction of Molecular Oxygen with a PdII– Hydride To Produce a PdII–Hydroperoxide: Acid Catalysis and Implications for Pd-Catalyzed Aerobic Oxidation Reactions. Angew. Chem., Int. Ed. 2006, 45, 29042907,  DOI: 10.1002/anie.200600532 .
    (b) Konnick, M. M.; Stahl, S. S. Reaction of Molecular Oxygen with a PdII-Hydride To Produce a PdII-Hydroperoxide: Experimental Evidence for an HX-Reductive-Elimination Pathway. J. Am. Chem. Soc. 2008, 130, 57535762,  DOI: 10.1021/ja7112504
  23. 23
    Prat, D.; Pardigon, O.; Flemming, H.-W.; Letestu, S.; Ducandas, V.; Isnard, P.; Guntrum, E.; Senac, T.; Ruisseau, S.; Cruciani, P.; Hosek, P. Sanofi’s Solvent Selection Guide: A Step Toward More Sustainable Processes. Org. Process Res. Dev. 2013, 17, 15171525,  DOI: 10.1021/op4002565
  24. 24
    (a) Xu, L.; Hilton, M. J.; Zhang, X.; Norrby, P.-O.; Wu, Y.-D.; Sigman, M. S.; Wiest, O. Mechanism, Reactivity, and Selectivity in Palladium-Catalyzed Redox-Relay Heck Arylations of Alkenyl Alcohols. J. Am. Chem. Soc. 2014, 136, 19601967,  DOI: 10.1021/ja4109616 .
    (b) Dang, Y.; Qu, S.; Wang, Z.-X.; Wang, X. A Computational Mechanistic Study of an Unprecedented Heck-Type Relay Reaction: Insight into the Origins of Regio- and Enantioselectivities. J. Am. Chem. Soc. 2014, 136, 986998,  DOI: 10.1021/ja410118m
  25. 25
    (a) Noyori, R.; Takaya, H. Reaction of Methylenecyclopropanes with Palladium Chloride. J. Chem. Soc. D 1969, 525,  DOI: 10.1039/c29690000525 .
    (b) Green, M.; Hughes, R. P. Transition-Metal Complexes of Methylenecyclopropanes: Ring-Opening Reactions Promoted by Palladium(II). J. Chem. Soc., Chem. Commun. 1974, 686,  DOI: 10.1039/c39740000686 .
    (c) Green, M.; Hughes, R. P. Reactions of Coordinated Ligands Part IX. Ring-Opening of Methylenecyclopropanes by Palladium(II)-Nucleofile Systems - Formation of Substituted η3-but-3-Enyl Complexes of Palladium(II). J. Chem. Soc., Dalton Trans. 1976, 1880,  DOI: 10.1039/DT9760001880 .
    (d) Hosokawa, T.; Maitlis, P. M. Model System for Acid and Base Reactions, Carbonylation, And β-Hydride Elimination in Organopalladium Chemistry. J. Am. Chem. Soc. 1972, 94, 3238,  DOI: 10.1021/ja00764a060 .
    (e) Lehmkuhl, H.; Naydowski, C.; Benn, R.; Rufinska, A.; Schroth, G. η5-Cyclopentadienyl-η2-Olefin-Alkylnickel. J. Organomet. Chem. 1982, 228, C1,  DOI: 10.1016/S0022-328X(00)86777-7 .
    (f) Thomson, S. K.; Young, G. B. Thermolytic Rearrangement of Cis-Bis-(Phosphine)Bis(Trimethylsilyl)Methyl Platinum(II) Complexes Via Beta-Alkyl Transfer. Organometallics 1989, 8, 2068,  DOI: 10.1021/om00110a041 .
    (g) Ankianiec, B. C.; Christou, V.; Hardy, D. T.; Thomson, S. K.; Young, G. B. Mechanism of Thermolytic Rearrangment of Cis-Bis(Silylmethyl)Platinum(II) Complexes: Beta-Carbon Transfer Predominates over Hydrogen-Transfer. J. Am. Chem. Soc. 1994, 116, 9963,  DOI: 10.1021/ja00101a018 .
    (h) Attig, T. G. Metal Hydride Induced Ring-Opening Reactions of Methylenecyclopropane Derivatives - Formation of Butenylplatinum(II) Complexes. Inorg. Chem. 1978, 17, 3097,  DOI: 10.1021/ic50189a026 .
    (i) Phillips, R. L.; Puddephatt, R. J. Reactions of Methylenecyclopropane with Some Hydridoplatinum(II) Complexes. J. Chem. Soc., Dalton Trans. 1978, 1736,  DOI: 10.1039/dt9780001736 .
    (j) Phillips, R. L.; Puddephatt, R. J. A Cyclopropylplatinum to Π-Allylplatinum Rearrangement. J. Organomet. Chem. 1977, 136, C52,  DOI: 10.1016/S0022-328X(00)93753-7 .
    (k) Abo-Amer, A.; Puddephatt, R. J. Reactivity and Mechanism in the Ring-Opening of Cyclopropylmethylplatinum(IV) Complexes. Inorg. Chem. Commun. 2011, 14, 111,  DOI: 10.1016/j.inoche.2010.09.044 .
    (l) Flood, T. C.; Statler, J. A. Synthesis, Characterization, and Rearragements of (1-Methylcyclbutyl)Methyl Platinum(II) Complexes: Very Mild Ring-Strain-Induced Carbon Carbon Activation. Organometallics 1984, 3, 1795,  DOI: 10.1021/om00090a004 .
    (m) Flood, T. C.; Bitler, S. P. Reversible Formal Alkene Insertion into a Chelated Platinum Alkyl Bond. J. Am. Chem. Soc. 1984, 106, 6076,  DOI: 10.1021/ja00332a053 .
    (n) Ermer, S. P.; Struck, G. E.; Bitler, S. P.; Richards, R.; Bau, R.; Flood, T. C. Kinetics and Conformation in the Reversible Insertion of an Alkene into a Platinum Carbon Bond in a Chelated (Pentenyl)Platinum Complex. Organometallics 1993, 12, 2634,  DOI: 10.1021/om00031a037 .
    (o) Zhugralin, A. R.; Kobylianskii, I. J.; Chen, P. Experimental Gas-Phase and in Silico Investigation of β-Methyl Elimination from Cationic Palladium Alkyl Species. Organometallics 2015, 34, 1301,  DOI: 10.1021/acs.organomet.5b00043
  26. 26
    (a) Doherty, N. M.; Bercaw, J. E. Kinetics and mechanism of the insertion of olefins into transition metal-hydride bonds. J. Am. Chem. Soc. 1985, 107, 26702682,  DOI: 10.1021/ja00295a020 .
    (b) Fristrup, P.; Le Quement, S.; Tanner, D.; Norrby, P.-O. Reactivity and Regioselectivity in the Heck Reaction:  Hammett Study of 4-Substituted Styrenes. Organometallics 2004, 23, 61606165,  DOI: 10.1021/om0494521
  27. 27
    (a) Stahl, S. S.; Thorman, J. L.; Nelson, R. C.; Kozee, M. A. Oxygenation of Nitrogen-Coordinated Palladium(0):  Synthetic, Structural, and Mechanistic Studies and Implications for Aerobic Oxidation Catalysis. J. Am. Chem. Soc. 2001, 123, 71887189,  DOI: 10.1021/ja015683c .
    (b) Decharin, N.; Stahl, S. S. Benzoquinone-Promoted Reaction of O2 with a PdII–Hydride. J. Am. Chem. Soc. 2011, 133, 57325735,  DOI: 10.1021/ja200957n
  28. 28
    Pomerantz, M.; Hartman, P. H. Thermal rearrangement of 3-phenylcyclobutene. Tetrahedron Lett. 1968, 9, 991993,  DOI: 10.1016/S0040-4039(01)98842-2

Cited By


This article is cited by 19 publications.

  1. Bichao Song, Peipei Xie, Yingzi Li, Jiping Hao, Lu Wang, Xiangyang Chen, Zhongliang Xu, Haitian Quan, Liguang Lou, Yuanzhi Xia, K. N. Houk, Weibo Yang. Pd-Catalyzed Decarboxylative Olefination: Stereoselective Synthesis of Polysubstituted Butadienes and Macrocyclic P-glycoprotein Inhibitors. Journal of the American Chemical Society 2020, 142 (22) , 9982-9992. https://doi.org/10.1021/jacs.0c00078OpenURL UNIV OF HOUSTON MAIN
  2. Yahui Li, Wei Xiong, Zhifeng Zhang, Tongyu Xu. Synthesis of Indolizine Derivatives Triggered by the Oxidative Addition of Aroyl Chloride to Pd(0) Complex. The Journal of Organic Chemistry 2020, 85 (10) , 6392-6399. https://doi.org/10.1021/acs.joc.0c00161OpenURL UNIV OF HOUSTON MAIN
  3. Xuewen Zhuang, Jia-Yi Chen, Zhuoyi Yang, Mengjing Jia, Chengjuan Wu, Rong-Zhen Liao, Chen-Ho Tung, Wenguang Wang. Sequential Transformation of Terminal Alkynes to 1,3-Dienes by a Cooperative Cobalt Pyridonate Catalyst. Organometallics 2019, 38 (19) , 3752-3759. https://doi.org/10.1021/acs.organomet.9b00486OpenURL UNIV OF HOUSTON MAIN
  4. C. Rose Kennedy, Hongyu Zhong, Rachel L. Macaulay, Paul J. Chirik. Regio- and Diastereoselective Iron-Catalyzed [4+4]-Cycloaddition of 1,3-Dienes. Journal of the American Chemical Society 2019, 141 (21) , 8557-8573. https://doi.org/10.1021/jacs.9b02443OpenURL UNIV OF HOUSTON MAIN
  5. Thomas K. Britten, Ashley J. Basson, Dean D. Roberts, Mark G. McLaughlin. Aza-Peterson Olefinations: Rapid Synthesis of (E)-Alkenes. Synthesis 2021, 33 https://doi.org/10.1055/a-1493-6670OpenURL UNIV OF HOUSTON MAIN
  6. Raquel G. Soengas, Humberto Rodríguez-Solla. Modern Synthetic Methods for the Stereoselective Construction of 1,3-Dienes. Molecules 2021, 26 (2) , 249. https://doi.org/10.3390/molecules26020249OpenURL UNIV OF HOUSTON MAIN
  7. Amr Elagamy, Ismail Althagafi, Ramendra Pratap. Step-wise and one-pot synthesis of highly substituted conjugated trienes from 2-oxobenzo[ h ]chromenes/2 H -pyran-2-ones. Organic & Biomolecular Chemistry 2021, 40 https://doi.org/10.1039/D1OB00314COpenURL UNIV OF HOUSTON MAIN
  8. Lei Ke, Zhilong Chen. Dienedioic acid as a useful diene building block via directed Heck-decarboxylate coupling. Communications Chemistry 2020, 3 (1) https://doi.org/10.1038/s42004-020-0295-0OpenURL UNIV OF HOUSTON MAIN
  9. Ze-Jian Xue, Meng-Yao Li, Bin-Bin Zhu, Zhi-Tao He, Chen-Guo Feng, Guo-Qiang Lin. Stereoselective synthesis of conjugated trienes via 1,4-palladium migration/Heck sequence. Chemical Communications 2020, 56 (92) , 14420-14422. https://doi.org/10.1039/D0CC06452AOpenURL UNIV OF HOUSTON MAIN
  10. Xin-Xing Wu, Hao Ye, Hong Dai, Bing Yang, Yang Wang, Shufeng Chen, Lanping Hu. Palladium-catalyzed domino Heck cyclization/ring opening of sulfolenes/desulfitative coupling: regio- and stereoselective synthesis of alkylated conjugated dienes. Organic Chemistry Frontiers 2020, 7 (18) , 2731-2736. https://doi.org/10.1039/D0QO00615GOpenURL UNIV OF HOUSTON MAIN
  11. Karu Ramesh, Gedu Satyanarayana. Transition-Metal Catalyzed Stereoselective γ-Arylation and Friedel-Crafts Alkylation: A Concise Synthesis of Indenes. European Journal of Organic Chemistry 2020, 2020 (22) , 3235-3242. https://doi.org/10.1002/ejoc.202000030OpenURL UNIV OF HOUSTON MAIN
  12. Ping Yang, Ren‐Qi Xu, Chao Zheng, Shu‐Li You. Pd‐Catalyzed Dearomatization of Indole Derivatives via Intermolecular Heck Reactions †. Chinese Journal of Chemistry 2020, 38 (3) , 235-241. https://doi.org/10.1002/cjoc.201900509OpenURL UNIV OF HOUSTON MAIN
  13. Xuan Yang, Wei-Yu Kong, Jia-Ni Gao, Li Cheng, Nan-Nan Li, Meng Li, Hui-Ting Li, Jun Fan, Jin-Ming Gao, Qin Ouyang, Jian-Bo Xie. Rhodium catalyzed C–C bond cleavage/coupling of 2-(azetidin-3-ylidene)acetates and analogs. Chemical Communications 2019, 55 (84) , 12707-12710. https://doi.org/10.1039/C9CC06446JOpenURL UNIV OF HOUSTON MAIN
  14. Xiao-Yu Lu, Jin-Song Li, Shi-Qun Wang, Yu-Jing Zhu, Yue-Ming Li, Lu-Yu Yan, Jia-Mei Li, Jin-Yu Wang, Hai-Pin Zhou, Xiu-Tao Ge. Pd-Catalyzed decarboxylative cross-coupling reactions of epoxides with α,β-unsaturated carboxylic acids. Chemical Communications 2019, 55 (74) , 11123-11126. https://doi.org/10.1039/C9CC04795FOpenURL UNIV OF HOUSTON MAIN
  15. You‐Quan Zhu, Yun‐Xia Niu, Li‐Wen Hui, Jing‐Li He, Kun Zhu. Reaction of Isoquinolin‐1(2 H )‐Ones with Methylenecyclopropanes via Rhodium(III)‐Catalyzed C−H Activation. Advanced Synthesis & Catalysis 2019, 361 (12) , 2897-2903. https://doi.org/10.1002/adsc.201900176OpenURL UNIV OF HOUSTON MAIN
  16. Yang Gao, Yang Ou, Lukas J. Gooßen. Pd‐Catalyzed Synthesis of Vinyl Arenes from Aryl Halides and Acrylic Acid. Chemistry – A European Journal 2019, 79 https://doi.org/10.1002/chem.201902022OpenURL UNIV OF HOUSTON MAIN
  17. Hang T. Dang, Viet D. Nguyen, Hoang H. Pham, Hadi D. Arman, Oleg V. Larionov. Highly stereoselective and catalytic desulfitative C O and C I dienylation with sulfolenes: The importance of basic additives. Tetrahedron 2019, 75 (24) , 3258-3264. https://doi.org/10.1016/j.tet.2019.04.012OpenURL UNIV OF HOUSTON MAIN
  18. Hui Peng, Jinhui Ma, Wenkun Luo, Guangwen Zhang, Biaolin Yin. Methyl-triflate-mediated dearylmethylation of N -(arylmethyl)carboxamides via the retro-Mannich reaction induced by electrophilic dearomatization/rearomatization in an aqueous medium at room temperature. Green Chemistry 2019, 21 (9) , 2252-2256. https://doi.org/10.1039/C9GC00176JOpenURL UNIV OF HOUSTON MAIN
  19. James Sherwood, James H. Clark, Ian J. S. Fairlamb, John M. Slattery. Solvent effects in palladium catalysed cross-coupling reactions. Green Chemistry 2019, 21 (9) , 2164-2213. https://doi.org/10.1039/C9GC00617FOpenURL UNIV OF HOUSTON MAIN
  • Abstract

    Scheme 1

    Scheme 1. Representative Routes to 1-Aryl-1,3-dienes

    Scheme 2

    Scheme 2. Evolution of Intermediates Following Insertion of Butadiene or Related Alkenes

    Figure 1

    Figure 1. Potential energies of key steps in putative reaction pathways to 1-aryl-1,3-diene products involving C–C cleavage by either a (a) β-alkyl elimination or (b) pericyclic mechanism. Geometry optimizations were carried out at the B3LYP/LANL2DZ-6-31-G(d) and solvation corrections at the M06/SDD-6-311+G(d,p)/SMD(THF) level of theory.

  • References

    ARTICLE SECTIONS
    Jump To

    This article references 28 other publications.

    1. 1
      (a) Goldfogel, M. J.; Roberts, C. C.; Meek, S. J. Intermolecular Hydroamination of 1,3-Dienes Catalyzed by Bis(phosphine)carbodicarbene–Rhodium Complexes. J. Am. Chem. Soc. 2014, 136, 62276230,  DOI: 10.1021/ja502275w .
      (b) Saini, V.; O’Dair, M.; Sigman, M. S. Synthesis of Highly Functionalized Tri- and Tetrasubstituted Alkenes via Pd-Catalyzed 1,2-Hydrovinylation of Terminal 1,3-Dienes. J. Am. Chem. Soc. 2015, 137, 608611,  DOI: 10.1021/ja511640g .
      (c) Roberts, C. C.; Matías, D. M.; Goldfogel, M. J.; Meek, S. J. Lewis Acid Activation of Carbodicarbene Catalysts for Rh-Catalyzed Hydroarylation of Dienes. J. Am. Chem. Soc. 2015, 137, 64886491,  DOI: 10.1021/jacs.5b03510 .
      (d) Thullen, S. M.; Rovis, T. A Mild Hydroaminoalkylation of Conjugated Dienes Using a Unified Cobalt and Photoredox Catalytic System. J. Am. Chem. Soc. 2017, 139, 1550415508,  DOI: 10.1021/jacs.7b09252 .
      (e) Yang, X. H.; Dong, V. M. Rhodium-Catalyzed Hydrofunctionalization: Enantioselective Coupling of Indolines and 1,3-Dienes. J. Am. Chem. Soc. 2017, 139, 17741777,  DOI: 10.1021/jacs.6b12307 .
      (f) Adamson, N. J.; Hull, E.; Malcolmson, S. J. Enantioselective Intermolecular Addition of Aliphatic Amines to Acyclic Dienes with a Pd-PHOX Catalyst. J. Am. Chem. Soc. 2017, 139, 71807183,  DOI: 10.1021/jacs.7b03480 .
      (g) Gu, L.; Wolf, L. M.; Zielinski, A.; Thiel, W.; Alcarazo, M. alpha-Dicationic Chelating Phosphines: Synthesis and Application to the Hydroarylation of Dienes. J. Am. Chem. Soc. 2017, 139, 49484953,  DOI: 10.1021/jacs.7b01441 .
      (h) Gui, Y.-Y.; Hu, N.; Chen, X.-W.; Liao, L. L.; Ju, T.; Ye, J.-H.; Zhang, Z.; Li, J.; Yu, D.-G. Highly Regio- and Enantioselective Copper-Catalyzed Reductive Hydroxymethylation of Styrenes and 1,3-Dienes with CO2. J. Am. Chem. Soc. 2017, 139, 1701117014,  DOI: 10.1021/jacs.7b10149 .
      (i) Marcum, J. S.; Roberts, C. C.; Manan, R. S.; Cervarich, T. N.; Meek, S. J. Chiral Pincer Carbodicarbene Ligands for Enantioselective Rhodium-Catalyzed Hydroarylation of Terminal and Internal 1,3-Dienes with Indoles. J. Am. Chem. Soc. 2017, 139, 1558015583,  DOI: 10.1021/jacs.7b08575 .
      (j) Adamson, N. J.; Wilbur, K. C. E.; Malcolmson, S. J. Enantioselective Intermolecular Pd-Catalyzed Hydroalkylation of Acyclic 1,3-Dienes with Activated Pronucleophiles. J. Am. Chem. Soc. 2018, 140, 27612764,  DOI: 10.1021/jacs.7b13300
    2. 2
      (a) Bar, G. L. J.; Lloyd-Jones, G. C.; Booker-Milburn, K. I. Pd(II)-Catalyzed Intermolecular 1,2-Diamination of Conjugated Dienes. J. Am. Chem. Soc. 2005, 127, 73087309,  DOI: 10.1021/ja051181d .
      (b) Du, H.; Yuan, W.; Zhao, B.; Shi, Y. Catalytic Asymmetric Diamination of Conjugated Dienes and Triene. J. Am. Chem. Soc. 2007, 129, 1168811689,  DOI: 10.1021/ja074698t .
      (c) Liao, L.; Jana, R.; Urkalan, K. B.; Sigman, M. S. A Palladium-Catalyzed Three-Component Cross-Coupling of Conjugated Dienes or Terminal Alkenes with Vinyl Triflates and Boronic Acids. J. Am. Chem. Soc. 2011, 133, 57845787,  DOI: 10.1021/ja201358b .
      (d) Wu, X.; Lin, H.-C.; Li, M.-L.; Li, L.-L.; Han, Z.-Y.; Gong, L.-Z. Enantioselective 1,2-Difunctionalization of Dienes Enabled by Chiral Palladium Complex-Catalyzed Cascade Arylation/Allylic Alkylation Reaction. J. Am. Chem. Soc. 2015, 137, 1347613479,  DOI: 10.1021/jacs.5b08734 .
      (e) Liu, Y.; Xie, Y.; Wang, H.; Huang, H. Enantioselective Aminomethylamination of Conjugated Dienes with Aminals Enabled by Chiral Palladium Complex-Catalyzed C–N Bond Activation. J. Am. Chem. Soc. 2016, 138, 43144317,  DOI: 10.1021/jacs.6b00976 .
      (f) Sardini, S. R.; Brown, M. K. Catalyst Controlled Regiodivergent Arylboration of Dienes. J. Am. Chem. Soc. 2017, 139, 98239826,  DOI: 10.1021/jacs.7b05477 .
      (g) Huang, Y.; Smith, K. B.; Brown, M. K. Copper-Catalyzed Borylacylation of Activated Alkenes with Acid Chlorides. Angew. Chem., Int. Ed. 2017, 56, 1331413318,  DOI: 10.1002/anie.201707323
    3. 3
      (a) Liao, L.; Guo, R.; Zhao, X. Organoselenium-Catalyzed Regioselective C-H Pyridination of 1,3-Dienes and Alkenes. Angew. Chem., Int. Ed. 2017, 56, 32013205,  DOI: 10.1002/anie.201610657 .
      (b) Bai, L.; Wang, Y.; Ge, Y.; Liu, J.; Luan, X. Diastereoselective Synthesis of Dibenzo[b,d]azepines by Pd(II)-Catalyzed [5 + 2] Annulation of o-Arylanilines with Dienes. Org. Lett. 2017, 19, 17341737,  DOI: 10.1021/acs.orglett.7b00503 .
      (c) Chen, S. S.; Wu, M. S.; Han, Z. Y. Palladium-Catalyzed Cascade sp(2) C-H Functionalization/Intramolecular Asymmetric Allylation: From Aryl Ureas and 1,3-Dienes to Chiral Indolines. Angew. Chem., Int. Ed. 2017, 56, 66416645,  DOI: 10.1002/anie.201702745
    4. 4
      (a) Hoyt, J. M.; Schmidt, V. A.; Tondreau, A. M.; Chirik, P. J. Iron-catalyzed intermolecular [2 + 2] cycloadditions of unactivated alkenes. Science 2015, 349, 960963,  DOI: 10.1126/science.aac7440 .
      (b) Kim, H.; Kim, S.; Kim, J.; Son, J. Y.; Baek, Y.; Um, K.; Lee, P. H. One-Pot Synthesis of Indolizines via Sequential Rhodium-Catalyzed [2 + 1]-Cyclopropanation, Palladium-Catalyzed Ring Expansion, and Oxidation Reactions from Pyridotriazoles and 1,3-Dienes. Org. Lett. 2017, 19, 56775680,  DOI: 10.1021/acs.orglett.7b02826 .
      (c) Lang, B.; Zhu, H.; Wang, C.; Lu, P.; Wang, Y. Rhodium-Catalyzed Cycloadditions between 3-Diazoindolin-2-imines and 1,3-Dienes. Org. Lett. 2017, 19, 16301633,  DOI: 10.1021/acs.orglett.7b00438 .
      (d) Kim, S.; Kim, H.; Um, K.; Lee, P. H. Synthesis of Azepinoindoles via Rhodium-Catalyzed Formal Aza-[4 + 3] Cycloaddition Reaction of 3-Diazoindolin-2-imines with 1,3-Dienes in One-Pot. J. Org. Chem. 2017, 82, 98089815,  DOI: 10.1021/acs.joc.7b01150
    5. 5
      (a) Sargent, B. T.; Alexanian, E. J. Cobalt-Catalyzed Carbonylative Cross-Coupling of Alkyl Tosylates and Dienes: Stereospecific Synthesis of Dienones at Low Pressure. J. Am. Chem. Soc. 2017, 139, 1243812440,  DOI: 10.1021/jacs.7b07983 .
      (b) Shen, H.-C.; Wang, P.-S.; Tao, Z.-L.; Han, Z.-Y.; Gong, L.-Z. An Enantioselective Multicomponent Carbonyl Allylation of Aldehydes with Dienes and Alkynyl Bromides Enabled by Chiral Palladium Phosphate. Adv. Synth. Catal. 2017, 359, 23832389,  DOI: 10.1002/adsc.201700621
    6. 6
      (a) De Paolis, M.; Chataigner, I.; Maddaluno, J. Recent Advances in Stereoselective Synthesis of 1,3-Dienes. In Stereoselective Alkene Synthesis; Wang, J., Ed.; Springer Berlin Heidelberg: Berlin, Heidelberg, 2012; pp 87146.
      (b) Mehta, G.; Rao, H. S. Synthesis of Conjugated Dienes and Polyenes. In The Chemistry of Dienes and Polyenes; Rappoport, Z., Ed.; Wiley: New York, 1997; Vol. 1, pp 359480.
      (c) Vasil’ev, A. A.; Serebryakov, E. P. Synthetic methodologies for carbo-substituted conjugated dienes. Russ. Chem. Rev. 2001, 70, 735776,  DOI: 10.1070/RC2001v070n09ABEH000683
    7. 7
      (a) Yamashita, M.; Hirano, K.; Satoh, T.; Miura, M. Synthesis of α,ω-Diarylbutadienes and -Hexatrienes via Decarboxylative Coupling of Cinnamic Acids with Vinyl Bromides under Palladium Catalysis. Org. Lett. 2010, 12, 592595,  DOI: 10.1021/ol9027896 .
      (b) Wang, G.; Mohan, S.; Negishi, E.-i. Highly selective synthesis of conjugated dienoic and trienoic esters via alkyne elementometalation–Pd-catalyzed cross-coupling. Proc. Natl. Acad. Sci. U. S. A. 2011, 108, 1134411349,  DOI: 10.1073/pnas.1105155108 .
      (c) Molloy, J. J.; Seath, C. P.; West, M. J.; McLaughlin, C.; Fazakerley, N. J.; Kennedy, A. R.; Nelson, D. J.; Watson, A. J. B. Interrogating Pd(II) Anion Metathesis Using a Bifunctional Chemical Probe: A Transmetalation Switch. J. Am. Chem. Soc. 2018, 140, 126130,  DOI: 10.1021/jacs.7b11180
    8. 8
      Olivares, A. M.; Weix, D. J. Multimetallic Ni- and Pd-Catalyzed Cross-Electrophile Coupling To Form Highly Substituted 1,3-Dienes. J. Am. Chem. Soc. 2018, 140, 24462449,  DOI: 10.1021/jacs.7b13601
    9. 9
      Diver, S. T.; Giessert, A. J. Enyne Metathesis (Enyne Bond Reorganization). Chem. Rev. 2004, 104, 13171382,  DOI: 10.1021/cr020009e
    10. 10
      (a) Barluenga, J.; Rodríguez, F.; Álvarez-Rodrigo, L.; Fañanás, F. J. Zirconium-Mediated Cross-Coupling of Terminal Alkynes and Vinyl Bromides: Selective Synthesis of Cyclobutene and 1,3-Diene Derivatives. Chem. - Eur. J. 2004, 10, 101108,  DOI: 10.1002/chem.200305337 .
      (b) Zhu, L.; Wehmeyer, R. M.; Rieke, R. D. The direct formation of functionalized alkyl(aryl)zinc halides by oxidative addition of highly reactive zinc with organic halides and their reactions with acid chlorides, .alpha.,.beta.-unsaturated ketones, and allylic, aryl, and vinyl halides. J. Org. Chem. 1991, 56, 14451453,  DOI: 10.1021/jo00004a021 .
      (c) Chatterjee, T.; Dey, R.; Ranu, B. C. An easy access to styrenes: trans aryl 1,3-, 1,4- and 1,5-dienes, and 1,3,5-trienes by Hiyama cross-coupling catalyzed by palladium nanoparticles. New J. Chem. 2011, 35, 11031110,  DOI: 10.1039/c0nj01019g .
      (d) Hatanaka, Y.; Hiyama, T. Cross-coupling of organosilanes with organic halides mediated by a palladium catalyst and tris(diethylamino)sulfonium difluorotrimethylsilicate. J. Org. Chem. 1988, 53, 918920,  DOI: 10.1021/jo00239a056 .
      (e) Alacid, E.; Nájera, C. Aqueous Sodium Hydroxide Promoted Cross-Coupling Reactions of Alkenyltrialkoxysilanes under Ligand-Free Conditions. J. Org. Chem. 2008, 73, 23152322,  DOI: 10.1021/jo702570q .
      (f) Lu, G.-p.; Voigtritter, K. R.; Cai, C.; Lipshutz, B. H. Ligand effects on the stereochemistry of Stille couplings, as manifested in reactions of Z-alkenyl halides. Chem. Commun. 2012, 48, 86618663,  DOI: 10.1039/c2cc33294a .
      (g) Stille, J. K.; Groh, B. L. Stereospecific cross-coupling of vinyl halides with vinyl tin reagents catalyzed by palladium. J. Am. Chem. Soc. 1987, 109, 813817,  DOI: 10.1021/ja00237a029 .
      (h) Krasovskiy, A. L.; Haley, S.; Voigtritter, K.; Lipshutz, B. H. Stereoretentive Pd-Catalyzed Kumada–Corriu Couplings of Alkenyl Halides at Room Temperature. Org. Lett. 2014, 16, 40664069,  DOI: 10.1021/ol501535w .
      (i) Molander, G. A.; Rivero, M. R. Suzuki Cross-Coupling Reactions of Potassium Alkenyltrifluoroborates. Org. Lett. 2002, 4, 107109,  DOI: 10.1021/ol0169729 .
      (j) Szudkowska-Fra̧tczak, J.; Ryba, A.; Franczyk, A.; Walkowiak, J.; Kubicki, M.; Pawluć, P. A highly selective synthesis of 1-substituted (E)-buta-1,3-dienes with 4,4,5,5-tetramethyl-2-vinyl-1,3,2-dioxaborolane as building block. Appl. Organomet. Chem. 2014, 28, 137139,  DOI: 10.1002/aoc.3095
    11. 11
      (a) Mundal, D. A.; Lutz, K. E.; Thomson, R. J. Stereoselective Synthesis of Dienes from N-Allylhydrazones. Org. Lett. 2009, 11, 465468,  DOI: 10.1021/ol802585r .
      (b) Nguyen, V. T.; Dang, H. T.; Pham, H. H.; Nguyen, V. D.; Flores-Hansen, C.; Arman, H. D.; Larionov, O. V. Highly Regio- and Stereoselective Catalytic Synthesis of Conjugated Dienes and Polyenes. J. Am. Chem. Soc. 2018, 140, 84348438,  DOI: 10.1021/jacs.8b05421
    12. 12
      Mitsudo, T.; Fischetti, W.; Heck, R. F. Palladium-catalyzed syntheses of aryl polyenes. J. Org. Chem. 1984, 49, 16401646,  DOI: 10.1021/jo00183a029
    13. 13
      Jeffery, T. Palladium-catalysed Arylation of 1,3-Dienes: A Highly Chemo, Regio and Stereoselective Synthesis of (E,E) Conjugated Dienic Aromatics. Tetrahedron Lett. 1992, 33, 19891992,  DOI: 10.1016/0040-4039(92)88121-K
    14. 14
      O’Reilly, M. E.; Dutta, S.; Veige, A. S. β-Alkyl Elimination: Fundamental Principles and Some Applications. Chem. Rev. 2016, 116, 81058145,  DOI: 10.1021/acs.chemrev.6b00054
    15. 15
      Shultz, L. H.; Brookhart, M. Measurement of the Barrier to Beta-Hydride Elimination in Beta-Agostic Palladium-Ethyl Complex: A Model for the Energetics of Chain-Walking in (Alpha-Diimine)PdR+ Olefin Polymerization Catalysts. Organometallics 2001, 20, 3975,  DOI: 10.1021/om010197j
    16. 16
      Larock, R. C.; Varaprath, S. Mercury in Organic Chemistry. 30. Synthesis of (π-Allyl)Palladium Compounds Via Organopalladium Additions to Alkenyl- and Methylenecyclopropanes and Alkenyl- and Methylenecyclobutanes. J. Org. Chem. 1984, 49, 3432,  DOI: 10.1021/jo00192a053
    17. 17
      (a) Werner, E. W.; Sigman, M. S. A Highly Selective and General Palladium Catalyst for the Oxidative Heck Reaction of Electronically Nonbiased Olefins. J. Am. Chem. Soc. 2010, 132, 1398113983,  DOI: 10.1021/ja1060998 .
      (b) Delcamp, J. H.; Brucks, A. P.; White, M. C. A General and Highly Selective Chelate-Controlled Intermolecular Oxidative Heck Reaction. J. Am. Chem. Soc. 2008, 130, 1127011271,  DOI: 10.1021/ja804120r .
      (c) Su, Y.; Jiao, N. Control of Chemo-, Regio-, and Stereoselectivities in Ligand-Free Pd-Catalyzed Oxidative Heck Reactions of Arylboronic Acids or Alkenylboronate with Allyl Esters. Org. Lett. 2009, 11, 29802983,  DOI: 10.1021/ol9009865
    18. 18
      (a) Karimi, B.; Behzadnia, H.; Elhamifar, D.; Akhavan, P. F.; Esfahani, F. K.; Zamani, A. Transition-Metal-Catalyzed Oxidative Heck Reactions. Synthesis 2010, 2010, 13991427,  DOI: 10.1055/s-0029-1218748 .
      (b) Lee, A. L. Enantioselective oxidative boron Heck reactions. Org. Biomol. Chem. 2016, 14, 53575366,  DOI: 10.1039/C5OB01984B
    19. 19
      Zheng, C.; Wang, D.; Stahl, S. S. Catalyst-Controlled Regioselectivity in the Synthesis of Branched Conjugated Dienes via Aerobic Oxidative Heck Reactions. J. Am. Chem. Soc. 2012, 134, 1649616499,  DOI: 10.1021/ja307371w
    20. 20
      Osterberg, P. M.; Niemeier, J. K.; Welch, C. J.; Hawkins, J. M.; Martinelli, J. R.; Johnson, T. E.; Root, T. W.; Stahl, S. S. Experimental Limiting Oxygen Concentrations for Nine Organic Solvents at Temperatures and Pressures Relevant to Aerobic Oxidations in the Pharmaceutical Industry. Org. Process Res. Dev. 2015, 19, 15371543,  DOI: 10.1021/op500328f
    21. 21
      Siegmann, K.; Pregosin, P. S.; Venanzi, L. M. Reaction of organoboron compounds with platinum(II) disolvento complexes. Organometallics 1989, 8, 26592664,  DOI: 10.1021/om00113a023
    22. 22
      (a) Konnick, M. M.; Gandhi, B. A.; Guzei, I. A.; Stahl, S. S. Reaction of Molecular Oxygen with a PdII– Hydride To Produce a PdII–Hydroperoxide: Acid Catalysis and Implications for Pd-Catalyzed Aerobic Oxidation Reactions. Angew. Chem., Int. Ed. 2006, 45, 29042907,  DOI: 10.1002/anie.200600532 .
      (b) Konnick, M. M.; Stahl, S. S. Reaction of Molecular Oxygen with a PdII-Hydride To Produce a PdII-Hydroperoxide: Experimental Evidence for an HX-Reductive-Elimination Pathway. J. Am. Chem. Soc. 2008, 130, 57535762,  DOI: 10.1021/ja7112504
    23. 23
      Prat, D.; Pardigon, O.; Flemming, H.-W.; Letestu, S.; Ducandas, V.; Isnard, P.; Guntrum, E.; Senac, T.; Ruisseau, S.; Cruciani, P.; Hosek, P. Sanofi’s Solvent Selection Guide: A Step Toward More Sustainable Processes. Org. Process Res. Dev. 2013, 17, 15171525,  DOI: 10.1021/op4002565
    24. 24
      (a) Xu, L.; Hilton, M. J.; Zhang, X.; Norrby, P.-O.; Wu, Y.-D.; Sigman, M. S.; Wiest, O. Mechanism, Reactivity, and Selectivity in Palladium-Catalyzed Redox-Relay Heck Arylations of Alkenyl Alcohols. J. Am. Chem. Soc. 2014, 136, 19601967,  DOI: 10.1021/ja4109616 .
      (b) Dang, Y.; Qu, S.; Wang, Z.-X.; Wang, X. A Computational Mechanistic Study of an Unprecedented Heck-Type Relay Reaction: Insight into the Origins of Regio- and Enantioselectivities. J. Am. Chem. Soc. 2014, 136, 986998,  DOI: 10.1021/ja410118m
    25. 25
      (a) Noyori, R.; Takaya, H. Reaction of Methylenecyclopropanes with Palladium Chloride. J. Chem. Soc. D 1969, 525,  DOI: 10.1039/c29690000525 .
      (b) Green, M.; Hughes, R. P. Transition-Metal Complexes of Methylenecyclopropanes: Ring-Opening Reactions Promoted by Palladium(II). J. Chem. Soc., Chem. Commun. 1974, 686,  DOI: 10.1039/c39740000686 .
      (c) Green, M.; Hughes, R. P. Reactions of Coordinated Ligands Part IX. Ring-Opening of Methylenecyclopropanes by Palladium(II)-Nucleofile Systems - Formation of Substituted η3-but-3-Enyl Complexes of Palladium(II). J. Chem. Soc., Dalton Trans. 1976, 1880,  DOI: 10.1039/DT9760001880 .
      (d) Hosokawa, T.; Maitlis, P. M. Model System for Acid and Base Reactions, Carbonylation, And β-Hydride Elimination in Organopalladium Chemistry. J. Am. Chem. Soc. 1972, 94, 3238,  DOI: 10.1021/ja00764a060 .
      (e) Lehmkuhl, H.; Naydowski, C.; Benn, R.; Rufinska, A.; Schroth, G. η5-Cyclopentadienyl-η2-Olefin-Alkylnickel. J. Organomet. Chem. 1982, 228, C1,  DOI: 10.1016/S0022-328X(00)86777-7 .
      (f) Thomson, S. K.; Young, G. B. Thermolytic Rearrangement of Cis-Bis-(Phosphine)Bis(Trimethylsilyl)Methyl Platinum(II) Complexes Via Beta-Alkyl Transfer. Organometallics 1989, 8, 2068,  DOI: 10.1021/om00110a041 .
      (g) Ankianiec, B. C.; Christou, V.; Hardy, D. T.; Thomson, S. K.; Young, G. B. Mechanism of Thermolytic Rearrangment of Cis-Bis(Silylmethyl)Platinum(II) Complexes: Beta-Carbon Transfer Predominates over Hydrogen-Transfer. J. Am. Chem. Soc. 1994, 116, 9963,  DOI: 10.1021/ja00101a018 .
      (h) Attig, T. G. Metal Hydride Induced Ring-Opening Reactions of Methylenecyclopropane Derivatives - Formation of Butenylplatinum(II) Complexes. Inorg. Chem. 1978, 17, 3097,  DOI: 10.1021/ic50189a026 .
      (i) Phillips, R. L.; Puddephatt, R. J. Reactions of Methylenecyclopropane with Some Hydridoplatinum(II) Complexes. J. Chem. Soc., Dalton Trans. 1978, 1736,  DOI: 10.1039/dt9780001736 .
      (j) Phillips, R. L.; Puddephatt, R. J. A Cyclopropylplatinum to Π-Allylplatinum Rearrangement. J. Organomet. Chem. 1977, 136, C52,  DOI: 10.1016/S0022-328X(00)93753-7 .
      (k) Abo-Amer, A.; Puddephatt, R. J. Reactivity and Mechanism in the Ring-Opening of Cyclopropylmethylplatinum(IV) Complexes. Inorg. Chem. Commun. 2011, 14, 111,  DOI: 10.1016/j.inoche.2010.09.044 .
      (l) Flood, T. C.; Statler, J. A. Synthesis, Characterization, and Rearragements of (1-Methylcyclbutyl)Methyl Platinum(II) Complexes: Very Mild Ring-Strain-Induced Carbon Carbon Activation. Organometallics 1984, 3, 1795,  DOI: 10.1021/om00090a004 .
      (m) Flood, T. C.; Bitler, S. P. Reversible Formal Alkene Insertion into a Chelated Platinum Alkyl Bond. J. Am. Chem. Soc. 1984, 106, 6076,  DOI: 10.1021/ja00332a053 .
      (n) Ermer, S. P.; Struck, G. E.; Bitler, S. P.; Richards, R.; Bau, R.; Flood, T. C. Kinetics and Conformation in the Reversible Insertion of an Alkene into a Platinum Carbon Bond in a Chelated (Pentenyl)Platinum Complex. Organometallics 1993, 12, 2634,  DOI: 10.1021/om00031a037 .
      (o) Zhugralin, A. R.; Kobylianskii, I. J.; Chen, P. Experimental Gas-Phase and in Silico Investigation of β-Methyl Elimination from Cationic Palladium Alkyl Species. Organometallics 2015, 34, 1301,  DOI: 10.1021/acs.organomet.5b00043
    26. 26
      (a) Doherty, N. M.; Bercaw, J. E. Kinetics and mechanism of the insertion of olefins into transition metal-hydride bonds. J. Am. Chem. Soc. 1985, 107, 26702682,  DOI: 10.1021/ja00295a020 .
      (b) Fristrup, P.; Le Quement, S.; Tanner, D.; Norrby, P.-O. Reactivity and Regioselectivity in the Heck Reaction:  Hammett Study of 4-Substituted Styrenes. Organometallics 2004, 23, 61606165,  DOI: 10.1021/om0494521
    27. 27
      (a) Stahl, S. S.; Thorman, J. L.; Nelson, R. C.; Kozee, M. A. Oxygenation of Nitrogen-Coordinated Palladium(0):  Synthetic, Structural, and Mechanistic Studies and Implications for Aerobic Oxidation Catalysis. J. Am. Chem. Soc. 2001, 123, 71887189,  DOI: 10.1021/ja015683c .
      (b) Decharin, N.; Stahl, S. S. Benzoquinone-Promoted Reaction of O2 with a PdII–Hydride. J. Am. Chem. Soc. 2011, 133, 57325735,  DOI: 10.1021/ja200957n
    28. 28
      Pomerantz, M.; Hartman, P. H. Thermal rearrangement of 3-phenylcyclobutene. Tetrahedron Lett. 1968, 9, 991993,  DOI: 10.1016/S0040-4039(01)98842-2
  • Supporting Information

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/jacs.8b10007.

    • Experimental procedures, computational data, and characterization and spectral data for new compounds (PDF)


    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

You’ve supercharged your research process with ACS and Mendeley!

STEP 1:
Click to create an ACS ID

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

MENDELEY PAIRING EXPIRED
Your Mendeley pairing has expired. Please reconnect

This website uses cookies to improve your user experience. By continuing to use the site, you are accepting our use of cookies. Read the ACS privacy policy.

CONTINUE